1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Plasmon enhanced resonant defect absorption in thin a-Si:H n-i-p devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/25/10.1063/1.4730432
1.
1. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Prog. Photovoltaics 12, 113 (2004).
http://dx.doi.org/10.1002/pip.533
2.
2. O. Kluth, A. Löffl, S. Wieder, C. Beneking, W. Appenzeller, L. Houben, B. Rech, H. Wagner, S. Hoffmann, R. Waser, J. Selvan, and H. Keppner, in Conference Record of the Twenty-Sixth IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA, 1997 (IEEE, 1997), pp. 715718.
3.
3. S. Faý, S. Dubail, U. Kroll, J. Meier, Y. Ziegler, and A. Shah, in Proceedings of the 16th EUPVSEC (Glasgow, 2000), p. 361.
4.
4. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, Opt. Express 18, A237 (2010).
http://dx.doi.org/10.1364/OE.18.00A237
5.
5. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, Appl. Phys. Lett. 89, 111111 (2006).
http://dx.doi.org/10.1063/1.2349845
6.
6. U. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, Appl. Phys. Lett. 99, 181105 (2011).
http://dx.doi.org/10.1063/1.3657513
7.
7. T. Temple, G. Mahanama, H. Reehal, and D. Bagnall, Sol. Energy Mater. Sol. Cells 93, 1978 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.07.014
8.
8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
9.
9. F. J. Beck, S. Mokkapati, and K. R. Catchpole, Prog. Photovoltaics 18, 500 (2010).
http://dx.doi.org/10.1002/pip.1006
10.
10. E. Moulin, P. Q. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Müller, R. Carius, F. X. Royer, and H. Stiebig, Appl. Phys. Lett. 95, 033505 (2009).
http://dx.doi.org/10.1063/1.3157264
11.
11. P. Q. Luo, E. Moulin, J. Sukmanowski, F. X. Royer, X. M. Dou, and H. Stiebig, Thin Solid Films 517, 6256 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.02.060
12.
12. F. Lükermann, F. Hamelmann, U. Heinzmann, and H. Stiebig, “Silver nanoparticles for enhanced light absorption in thin film amorphous silicon solar cells” (unpublished).
13.
13. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, Thin Solid Films 516, 6813 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.018
14.
14. I. Kityk, J. Ebothé, K. Ozga, K. Plucinski, G. Chang, K. Kobayashi, and M. Oyama, Physica E 31, 38 (2006).
http://dx.doi.org/10.1016/j.physe.2005.08.012
15.
15. K. Ozga, T. Kawaharamura, A. A. Umar, M. Oyama, K. Nouneh, A. Slezak, S. Fujita, M. Piasecki, A. H. Reshak, and I. V. Kityk, Nanotechnology 19, 185709 (2008).
http://dx.doi.org/10.1088/0957-4484/19/18/185709
16.
16. R. A. Street, Philos. Mag. B 63, 1343 (1991).
http://dx.doi.org/10.1080/13642819108205566
17.
17. K. Winer, I. Hirabayashi, and L. Ley, Phys. Rev. B 38, 7680 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7680
18.
18. J. Chen and A. Milnes, Annu. Rev. Mater. Sci. 10, 157 (1980).
http://dx.doi.org/10.1146/annurev.ms.10.080180.001105
19.
19. M. Green, Silicon Solar Cells: Advanced Principles and Practice (Centre for Photovoltaic Devices and Systems, University of New South Wales, 1995), p. 148.
20.
20. H. Kasai and H. Matsumura, Sol. Energy Mater. Sol. Cells 48, 93 (1997).
http://dx.doi.org/10.1016/S0927-0248(97)00075-5
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/25/10.1063/1.4730432
Loading
/content/aip/journal/apl/100/25/10.1063/1.4730432
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/25/10.1063/1.4730432
2012-06-22
2014-07-22

Abstract

By embedding silver nanoparticles (Ag NPs) of approximately 20 nm diameter inside the intrinsic layer of thin hydrogenated amorphous silicon (a-Si:H) n-i-p devices, a photocurrent is measured for photon energies below the a-Si:H bandgap. This is attributed to the excitation of charge carriers from defect states created by the incorporation of the Ag inside the silicon network. The defect location inside the strong electromagnetic fields close to the resonant absorbing NPs enables high transition rates. This is a proof of concept for the use of the impurity photovoltaic effect in a-Si:H devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/25/1.4730432.html;jsessionid=cmrcphm7fl17r.x-aip-live-06?itemId=/content/aip/journal/apl/100/25/10.1063/1.4730432&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmon enhanced resonant defect absorption in thin a-Si:H n-i-p devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/25/10.1063/1.4730432
10.1063/1.4730432
SEARCH_EXPAND_ITEM