1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Telecommunications-band heralded single photons from a silicon nanophotonic chip
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/26/10.1063/1.4711253
1.
1. J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Photon. 3, 687 (2009).
http://dx.doi.org/10.1038/nphoton.2009.229
2.
2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, Science 320, 646 (2008).
http://dx.doi.org/10.1126/science.1155441
3.
3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, Nature Photon. 3, 346 (2009).
http://dx.doi.org/10.1038/nphoton.2009.93
4.
4. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett. 105, 200503 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.200503
5.
5. A. J. Shields, Nature Photon. 1, 215 (2007).
http://dx.doi.org/10.1038/nphoton.2007.46
6.
6. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Esaki, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, V. Zwiller, J. O’Brien, and M. Thompson, in 8th IEEE International Conference on Group IV Photonics (GFP) (IEEE, Piscataway, NJ, 2011), pp. 13.
7.
7. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, e-print arXiv:1108.5299.
8.
8. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.691
9.
9. P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).
http://dx.doi.org/10.1209/0295-5075/1/4/004
10.
10. C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.58
11.
11. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, New J. Phys. 6, 163 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/163
12.
12. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett. 100, 133601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.133601
13.
13. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, Phys. Rev. Lett. 93, 093601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.093601
14.
14. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, Opt. Lett. 30, 1539 (2005).
http://dx.doi.org/10.1364/OL.30.001539
15.
15. M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, Appl. Phys. Lett. 99, 081110 (2011).
http://dx.doi.org/10.1063/1.3628328
16.
16. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photonics Technol. Lett. 14, 983 (2002).
http://dx.doi.org/10.1109/LPT.2002.1012406
17.
17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, Opt. Express 13, 534 (2005).
http://dx.doi.org/10.1364/OPEX.13.000534
18.
18. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, Phys. Rev. A 78, 013844 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.013844
19.
19. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, Phys. Rev. Lett. 102, 123603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.123603
20.
20. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, Opt. Express 14, 12388 (2006).
http://dx.doi.org/10.1364/OE.14.012388
21.
21. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, Opt. Express 16, 20368 (2008).
http://dx.doi.org/10.1364/OE.16.020368
22.
22. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, Opt. Express 17, 16558 (2009).
http://dx.doi.org/10.1364/OE.17.016558
23.
23. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, Opt. Lett. 36, 3413 (2011).
http://dx.doi.org/10.1364/OL.36.003413
24.
24. A. Tosi, A. Della Frera, A. Bahgat Shehata, and C. Scarcella, Rev. Sci. Inst. 83, 013104 (2012).
http://dx.doi.org/10.1063/1.3675579
25.
25. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, Opt. Lett. 31, 1905 (2006).
http://dx.doi.org/10.1364/OL.31.001905
26.
26. J. Ong, M. Cooper, G. Gupta, W. Green, S. Assefa, F. Xia, and S. Mookherjea, Opt. Lett. 36, 2964 (2011).
http://dx.doi.org/10.1364/OL.36.002964
27.
27. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, Nature Commun. 2, 296 (2011).
http://dx.doi.org/10.1038/ncomms1294
28.
28. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, Opt. Express 19, 1986119874 (2011).
http://dx.doi.org/10.1364/OE.19.019861
29.
29.Raw coincidences Craw are counted over a 512 ps bin at zero time delay between the C–band and L–band paths. Raw accidentals (Araw) are taken as the average over thirty separate 512 ps bins at time delays of , corresponding to the 1 MHz trigger rate, with coincidences due to dark counts D determined in the same way. The uncertainties in Araw and D are one standard deviation values and are propagated to generate the error bars in the CAR plot.
30.
30.Coincidence and accidental rates at the CROW output are determined by taking the measured values and accounting for detector efficiency, filter losses, and output coupling loss from the CROW into the lensed fiber.
31.
31. M. Beck, J. Opt. Soc. Am. B 24, 2972 (2007).
http://dx.doi.org/10.1364/JOSAB.24.002972
32.
32. NAB and NAC are given by the average detection rates on SPADs B and C multiplied by the integration time, respectively. NA is the average photon detection rate on SPAD A mutiplied by the integration time. The one standard deviation uncertainties on these values are propagated to generate the error bars in Fig. 2(b).
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4711253
Loading
/content/aip/journal/apl/100/26/10.1063/1.4711253
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/26/10.1063/1.4711253
2012-06-25
2014-09-17

Abstract

We demonstrate room temperature heralded single photon generation in a CMOS-compatible siliconnanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonatoroptical waveguide produced a large four-wave-mixing nonlinearity coefficient W−1 m−1 at telecommunications wavelengths. Spontaneous four-wave-mixing using a degenerate pump beam at 1549.6 nm created photon pairs at 1529.5 nm and 1570.5 nm with a coincidence-to-accidental ratio exceeding 20. A photon correlation measurement of the signal (1529.5 nm) photons heralded by the detection of the idler (1570.5 nm) photons showed antibunching with . The demonstration of a single photon source within a silicon platform holds promise for future integrated quantum photonic circuits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/26/1.4711253.html;jsessionid=2a7sgfpjwf4ab.x-aip-live-06?itemId=/content/aip/journal/apl/100/26/10.1063/1.4711253&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Telecommunications-band heralded single photons from a silicon nanophotonic chip
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4711253
10.1063/1.4711253
SEARCH_EXPAND_ITEM