1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Telecommunications-band heralded single photons from a silicon nanophotonic chip
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/26/10.1063/1.4711253
1.
1. J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Photon. 3, 687 (2009).
http://dx.doi.org/10.1038/nphoton.2009.229
2.
2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, Science 320, 646 (2008).
http://dx.doi.org/10.1126/science.1155441
3.
3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, Nature Photon. 3, 346 (2009).
http://dx.doi.org/10.1038/nphoton.2009.93
4.
4. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett. 105, 200503 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.200503
5.
5. A. J. Shields, Nature Photon. 1, 215 (2007).
http://dx.doi.org/10.1038/nphoton.2007.46
6.
6. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Esaki, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, V. Zwiller, J. O’Brien, and M. Thompson, in 8th IEEE International Conference on Group IV Photonics (GFP) (IEEE, Piscataway, NJ, 2011), pp. 13.
7.
7. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, e-print arXiv:1108.5299.
8.
8. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.691
9.
9. P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).
http://dx.doi.org/10.1209/0295-5075/1/4/004
10.
10. C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.58
11.
11. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, New J. Phys. 6, 163 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/163
12.
12. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett. 100, 133601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.133601
13.
13. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, Phys. Rev. Lett. 93, 093601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.093601
14.
14. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, Opt. Lett. 30, 1539 (2005).
http://dx.doi.org/10.1364/OL.30.001539
15.
15. M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, Appl. Phys. Lett. 99, 081110 (2011).
http://dx.doi.org/10.1063/1.3628328
16.
16. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photonics Technol. Lett. 14, 983 (2002).
http://dx.doi.org/10.1109/LPT.2002.1012406
17.
17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, Opt. Express 13, 534 (2005).
http://dx.doi.org/10.1364/OPEX.13.000534
18.
18. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, Phys. Rev. A 78, 013844 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.013844
19.
19. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, Phys. Rev. Lett. 102, 123603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.123603
20.
20. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, Opt. Express 14, 12388 (2006).
http://dx.doi.org/10.1364/OE.14.012388
21.
21. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, Opt. Express 16, 20368 (2008).
http://dx.doi.org/10.1364/OE.16.020368
22.
22. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, Opt. Express 17, 16558 (2009).
http://dx.doi.org/10.1364/OE.17.016558
23.
23. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, Opt. Lett. 36, 3413 (2011).
http://dx.doi.org/10.1364/OL.36.003413
24.
24. A. Tosi, A. Della Frera, A. Bahgat Shehata, and C. Scarcella, Rev. Sci. Inst. 83, 013104 (2012).
http://dx.doi.org/10.1063/1.3675579
25.
25. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, Opt. Lett. 31, 1905 (2006).
http://dx.doi.org/10.1364/OL.31.001905
26.
26. J. Ong, M. Cooper, G. Gupta, W. Green, S. Assefa, F. Xia, and S. Mookherjea, Opt. Lett. 36, 2964 (2011).
http://dx.doi.org/10.1364/OL.36.002964
27.
27. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, Nature Commun. 2, 296 (2011).
http://dx.doi.org/10.1038/ncomms1294
28.
28. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, Opt. Express 19, 1986119874 (2011).
http://dx.doi.org/10.1364/OE.19.019861
29.
29.Raw coincidences Craw are counted over a 512 ps bin at zero time delay between the C–band and L–band paths. Raw accidentals (Araw) are taken as the average over thirty separate 512 ps bins at time delays of , corresponding to the 1 MHz trigger rate, with coincidences due to dark counts D determined in the same way. The uncertainties in Araw and D are one standard deviation values and are propagated to generate the error bars in the CAR plot.
30.
30.Coincidence and accidental rates at the CROW output are determined by taking the measured values and accounting for detector efficiency, filter losses, and output coupling loss from the CROW into the lensed fiber.
31.
31. M. Beck, J. Opt. Soc. Am. B 24, 2972 (2007).
http://dx.doi.org/10.1364/JOSAB.24.002972
32.
32. NAB and NAC are given by the average detection rates on SPADs B and C multiplied by the integration time, respectively. NA is the average photon detection rate on SPAD A mutiplied by the integration time. The one standard deviation uncertainties on these values are propagated to generate the error bars in Fig. 2(b).
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4711253
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Photon pair production. (a) Scanning electron microscope image of the 35-ring CROW used in this work. (b) Experimental setup used to measure correlated photon pairs generated by the CROW. The 1520 nm to 1630 nm tunable laser is used for classical FWM experiments to identify the signal and idler wavelengths, but is disconnected during SFWM/photon pair generation measurements. EDFA = erbium-doped fiber amplifier, WDM = wavelength division multiplexer, FPC = fiber polarization controller, VOA = variable optical attenuator, OSA = optical spectrum analyzer, SPAD = single photon avalanche diode. (c) FWM spectrum in which a 1549.6 nm pump adds stimulated photons into the 1570.5 nm probe and generates a new field at 1529.5 nm. The spectral peaks in between the pump and signal/idler fields are due to transmission of (unfiltered) EDFA amplified spontaneous emission (ASE) through the CROW passbands. In photon pair measurements, this ASE is suppressed by >150 dB by the pump isolation WDMs. (d) CAR as a function of power at theCROW input, for continuous wave pumping.29 (e) Number of coincidences (red) and accidentals (blue) at the CROW output as a function of power at the CROW input. Results are plotted in units of (left y-axis) counts per gate and (right y-axis) counts per second.30

Image of FIG. 2.

Click to view

FIG. 2.

Heralded single photon measurement. (a) Schematic of the experimental setup used to perform heralded single photon measurements. The Si CROW is pumped by a pulsed 1549.6 nm laser (2.5 ns pulses, 8 MHz repetition rate) generated by a modulated and amplified diode laser. Generated photon pairs are spectrally isolated and separated into the C-band (1529.5 nm) and L-band (1570.5 nm). Detection of an L-band photon by an InGaAs/InP SPAD is used to trigger a Hanbury-Brown and Twiss photon correlation measurement on the C-band photon. (b) Heralded as a function of average power at the CROW input.31 (c) Heralding rate at the CROW output as a function of average power at the CROW input. Results are plotted in units of (left y-axis) heralding photons per second and (right y-axis) heralding photons per pulse.

Loading

Article metrics loading...

/content/aip/journal/apl/100/26/10.1063/1.4711253
2012-06-25
2014-04-24

Abstract

We demonstrate room temperature heralded single photon generation in a CMOS-compatible siliconnanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonatoroptical waveguide produced a large four-wave-mixing nonlinearity coefficient W−1 m−1 at telecommunications wavelengths. Spontaneous four-wave-mixing using a degenerate pump beam at 1549.6 nm created photon pairs at 1529.5 nm and 1570.5 nm with a coincidence-to-accidental ratio exceeding 20. A photon correlation measurement of the signal (1529.5 nm) photons heralded by the detection of the idler (1570.5 nm) photons showed antibunching with . The demonstration of a single photon source within a silicon platform holds promise for future integrated quantum photonic circuits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/26/1.4711253.html;jsessionid=405517um3lrsp.x-aip-live-06?itemId=/content/aip/journal/apl/100/26/10.1063/1.4711253&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Telecommunications-band heralded single photons from a silicon nanophotonic chip
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4711253
10.1063/1.4711253
SEARCH_EXPAND_ITEM