1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/26/10.1063/1.4730954
1.
1. P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
http://dx.doi.org/10.1109/22.989974
2.
2. B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
http://dx.doi.org/10.1038/nmat708
3.
3. R. A. Lewis, Proc. IEEE 95, 1641 (2007).
http://dx.doi.org/10.1109/JPROC.2007.898902
4.
4. Sensing with Terahertz Radiation, edited by D. Mittleman (Springer, Berlin, 2003).
5.
5. Terahertz Optoelectronics, edited by K. Sakai (Springer, Berlin, 2005).
6.
6. Terahertz Spectroscopy: Principles and Applications, edited by S. L. Dexheimer (CRC, Boca Raton, 2007).
7.
7. S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University Press, Oxford, 2005).
8.
8. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009).
9.
9. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010).
10.
10. C. A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004).
http://dx.doi.org/10.1021/cr020685g
11.
11. X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
http://dx.doi.org/10.1063/1.102601
12.
12. J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, Phys. Rev. B 70, 235330 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235330
13.
13. V. L. Malevich, R. Adomavičius, and A. Krotkus, C. R. Phys. 9, 130 (2008).
http://dx.doi.org/10.1016/j.crhy.2007.09.014
14.
14. R. Mendis, M. L. Smith, L. J. Bignell, R. E. M. Vickers, and R. A. Lewis, J. Appl. Phys. 98, 126104 (2005).
http://dx.doi.org/10.1063/1.2149161
15.
15. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, Phys. Rev. B 65, 165301 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165301
16.
16. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, J. Appl. Phys. 91, 2104 (2002).
http://dx.doi.org/10.1063/1.1433187
17.
17. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, Phys. Rev. B 71, 195301 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195301
18.
18. V. L. Malevich, Semicond. Sci. Technol. 17, 551 (2002).
http://dx.doi.org/10.1088/0268-1242/17/6/309
19.
19. V. L. Malevich, Acta Phys. Pol. A 107, 169 (2005).
20.
20. D. Liu and J. Qin, Int. J. Infrared Millim. Waves 24, 2127 (2003).
http://dx.doi.org/10.1023/B:IJIM.0000009768.75736.16
21.
21. D. Liu and Y. Tan, Int. J. Infrared Millim. Waves 26, 1265 (2005).
http://dx.doi.org/10.1007/s10762-005-7602-9
22.
22. D. Liu and D. Xu, Int. J. Infrared Millim. Waves 27, 1195 (2006).
http://dx.doi.org/10.1007/s10762-006-9137-0
23.
23. A. Reklaitis, Phys. Rev. B 74, 165305 (2006).
24.
24. A. Reklaitis, Phys. Rev. B 77, 153309 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.153309
25.
25. A. Reklaitis, J. Appl. Phys. 108, 053102 (2010).
http://dx.doi.org/10.1063/1.3467526
26.
26. A. Reklaitis, J. Appl. Phys. 109, 083108 (2011).
http://dx.doi.org/10.1063/1.3580331
27.
27. D. L. Cortie and R. A. Lewis, Phys. Rev. B 84, 155328 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155328
28.
28. C. Jacoboni and L. Reggianni, Rev. Mod. Phys. 55, 645 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.645
29.
29. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag/Wien, New York, 1989).
30.
30. W. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. Solids 31, 1963 (1970).
http://dx.doi.org/10.1016/0022-3697(70)90001-6
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4730954
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Calculated electron scattering rates in GaAs as a function of electron kinetic energy. (a) Polar optical phonon emission. (b) Polar optical phonon absorption. (c) Upper limit for carrier-carrier scattering. (d) Ionized-impurity scattering. (e) Intervalley scattering.

Image of FIG. 2.

Click to view

FIG. 2.

The major role played by polar optical phonon scattering in reducing terahertz emission from GaAs. The full curve represents the electrodynamic simulation without scattering. The dotted curve includes only polaroptical phonon scattering. This reduces the peak terahertz field by approximately one third. Little further change results when carrier-carrier, intervalley, and ionized-impurity scattering are included in the simulation, represented by the dashed curve.

Image of FIG. 3.

Click to view

FIG. 3.

The effect of surface potential on terahertz emission from GaAs. Red (black) traces correspond to positive (negative) potentials. A positive (negative) potential attracts (repels) electrons to (from) the surface to form an electron accumulation (depletion) layer, or downward (upward) conduction band bending. At large potentials of opposite polarities, the sign of the terahertz field is reversed. There is a slight asymmetry; negative potentials assist the photo-Dember effect whereas positive potentials compete with it.

Image of FIG. 4.

Click to view

FIG. 4.

Role of laser pulse length on terahertz radiation from GaAs. (Inset) The peak-to-peak intensity for usual photon absorption coefficient (1.2 × 106 m−1; triangles) and a large absorption coefficient (10 × 106 m−1; circles).

Image of FIG. 5.

Click to view

FIG. 5.

Role of (a) absorption coefficient, (b) bandgap, and (c) effective mass on surface terahertz emission.

Tables

Generic image for table

Click to view

Table I.

GaAs physical parameters used in the model. These are identical to Ref. 15, with the speed of sound added.

Loading

Article metrics loading...

/content/aip/journal/apl/100/26/10.1063/1.4730954
2012-06-25
2014-04-18

Abstract

It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs),scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/26/1.4730954.html;jsessionid=j45djt4sleqe.x-aip-live-02?itemId=/content/aip/journal/apl/100/26/10.1063/1.4730954&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4730954
10.1063/1.4730954
SEARCH_EXPAND_ITEM