1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/26/10.1063/1.4730954
1.
1. P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
http://dx.doi.org/10.1109/22.989974
2.
2. B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002).
http://dx.doi.org/10.1038/nmat708
3.
3. R. A. Lewis, Proc. IEEE 95, 1641 (2007).
http://dx.doi.org/10.1109/JPROC.2007.898902
4.
4. Sensing with Terahertz Radiation, edited by D. Mittleman (Springer, Berlin, 2003).
5.
5. Terahertz Optoelectronics, edited by K. Sakai (Springer, Berlin, 2005).
6.
6. Terahertz Spectroscopy: Principles and Applications, edited by S. L. Dexheimer (CRC, Boca Raton, 2007).
7.
7. S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University Press, Oxford, 2005).
8.
8. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009).
9.
9. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010).
10.
10. C. A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004).
http://dx.doi.org/10.1021/cr020685g
11.
11. X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).
http://dx.doi.org/10.1063/1.102601
12.
12. J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, Phys. Rev. B 70, 235330 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235330
13.
13. V. L. Malevich, R. Adomavičius, and A. Krotkus, C. R. Phys. 9, 130 (2008).
http://dx.doi.org/10.1016/j.crhy.2007.09.014
14.
14. R. Mendis, M. L. Smith, L. J. Bignell, R. E. M. Vickers, and R. A. Lewis, J. Appl. Phys. 98, 126104 (2005).
http://dx.doi.org/10.1063/1.2149161
15.
15. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, Phys. Rev. B 65, 165301 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165301
16.
16. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, J. Appl. Phys. 91, 2104 (2002).
http://dx.doi.org/10.1063/1.1433187
17.
17. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, Phys. Rev. B 71, 195301 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195301
18.
18. V. L. Malevich, Semicond. Sci. Technol. 17, 551 (2002).
http://dx.doi.org/10.1088/0268-1242/17/6/309
19.
19. V. L. Malevich, Acta Phys. Pol. A 107, 169 (2005).
20.
20. D. Liu and J. Qin, Int. J. Infrared Millim. Waves 24, 2127 (2003).
http://dx.doi.org/10.1023/B:IJIM.0000009768.75736.16
21.
21. D. Liu and Y. Tan, Int. J. Infrared Millim. Waves 26, 1265 (2005).
http://dx.doi.org/10.1007/s10762-005-7602-9
22.
22. D. Liu and D. Xu, Int. J. Infrared Millim. Waves 27, 1195 (2006).
http://dx.doi.org/10.1007/s10762-006-9137-0
23.
23. A. Reklaitis, Phys. Rev. B 74, 165305 (2006).
24.
24. A. Reklaitis, Phys. Rev. B 77, 153309 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.153309
25.
25. A. Reklaitis, J. Appl. Phys. 108, 053102 (2010).
http://dx.doi.org/10.1063/1.3467526
26.
26. A. Reklaitis, J. Appl. Phys. 109, 083108 (2011).
http://dx.doi.org/10.1063/1.3580331
27.
27. D. L. Cortie and R. A. Lewis, Phys. Rev. B 84, 155328 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155328
28.
28. C. Jacoboni and L. Reggianni, Rev. Mod. Phys. 55, 645 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.645
29.
29. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag/Wien, New York, 1989).
30.
30. W. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. Solids 31, 1963 (1970).
http://dx.doi.org/10.1016/0022-3697(70)90001-6
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4730954
Loading
/content/aip/journal/apl/100/26/10.1063/1.4730954
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/26/10.1063/1.4730954
2012-06-25
2014-11-28

Abstract

It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs),scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/26/1.4730954.html;jsessionid=52dm6815ond53.x-aip-live-06?itemId=/content/aip/journal/apl/100/26/10.1063/1.4730954&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/26/10.1063/1.4730954
10.1063/1.4730954
SEARCH_EXPAND_ITEM