1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/100/3/10.1063/1.3671182
1.
1. E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. DenBaars, and L. A. Coldren, Phys. Rev. B 61(16 ), 10994 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10994
2.
2. J. Bai, T. Wang, and S. Sakai, J. Appl. Phys. 88(8 ), 4729 (2000).
http://dx.doi.org/10.1063/1.1311831
3.
3. Y. C. Shen, F. O. Muller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
4.
4. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
http://dx.doi.org/10.1063/1.2800290
5.
5. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Naksmura, and U. K. Mishra, Jpn. J. Appl. Phys. 44(5 ), L173 (2005).
http://dx.doi.org/10.1143/JJAP.44.L173
6.
6. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, Jpn. J. Appl. Phys. 45(26 ), L659 (2006).
http://dx.doi.org/10.1143/JJAP.45.L659
7.
7. H. Zhong, A. Tyagi, N. N. Fellows, F. Wu, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 90, 233504 (2007).
http://dx.doi.org/10.1063/1.2746418
8.
8. X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
http://dx.doi.org/10.1021/ja993713u
9.
9. S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6(8 ), 1808 (2006).
http://dx.doi.org/10.1021/nl060553t
10.
10. X. Zhang, P. D. Dapkus, and D. H. Rich, Appl. Phys. Lett. 77, 1496 (2000).
http://dx.doi.org/10.1063/1.1308055
11.
11. R. S. Q. Fareed, J. W. Yang, J. Zhang, V. Adivarahan, V. Chaturvedi, and M. A. Khan, Appl. Phys. Lett. 77, 2343 (2000).
http://dx.doi.org/10.1063/1.1316063
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/3/10.1063/1.3671182
Loading
/content/aip/journal/apl/100/3/10.1063/1.3671182
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/3/10.1063/1.3671182
2012-01-20
2015-08-01

Abstract

We demonstrate that nonpolar m-plane surfaces can be generated on uniform GaNnanosheet arrays grown vertically from the (0001)-GaN bulk material. InGaN/GaN multiple quantum wells(MQWs) grown on the facets of these nanosheets are demonstrated by cross-sectional transmission electron microscopy. Owing to the high aspect ratio of the GaNnanosheetstructure, the MQWs predominantly grow on nonpolar GaN planes. The results suggest that GaNnanosheets provide a conduction path for device fabrication and also a growth template to reduce the piezoelectric field inside the active region of InGaN-based light emitting diodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/3/1.3671182.html;jsessionid=4b75q9oqddmns.x-aip-live-02?itemId=/content/aip/journal/apl/100/3/10.1063/1.3671182&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/3/10.1063/1.3671182
10.1063/1.3671182
SEARCH_EXPAND_ITEM