1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Morphological control of hybrid polymer-quantum dot solar cells with electron acceptor ligands
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/3/10.1063/1.3678603
1.
1. N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17628
2.
2. D. S. Ginger and N. C. Greenham, J. Appl. Phys. 87, 1361 (2000).
http://dx.doi.org/10.1063/1.372021
3.
3. W. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
http://dx.doi.org/10.1126/science.1069156
4.
4. W. Huynh, J. J. Dittmer, W. Libby, G. Whiting, and A. P. Alivisatos, Adv. Funct. Mater. 13, 73 (2003).
http://dx.doi.org/10.1002/adfm.200390009
5.
5. B. Sun and N. C. Greenham, Phys. Chem. Chem. Phys. 8, 3557 (2006).
http://dx.doi.org/10.1039/b604734n
6.
6. B. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff, and N. C. Greenham, J. Appl. Phys. 97, 014914 (2005).
http://dx.doi.org/10.1063/1.1804613
7.
7. I. Gur, N. A. Fromer, C. Chen, A. G. Kanaras, and A. P. Alivisatos, Nano Lett. 7, 409 (2007).
http://dx.doi.org/10.1021/nl062660t
8.
8. S. Kumar and G. D. Scholes, Microchim. Acta 160, 315 (2007).
http://dx.doi.org/10.1007/s00604-007-0806-z
9.
9. B. R. Saunders and M. L. Turner, Adv. Colloid. Interface Sci. 138, 1 (2008).
http://dx.doi.org/10.1016/j.cis.2007.09.001
10.
10. D. Aldakov, F. Chandezon, R. D. Bettignies, M. Firon, P. Reiss, and A. Pron, Eur. Phys. J.: Appl. Phys. 36, 5 (2006).
http://dx.doi.org/10.1051/epjap:2006144
11.
11. J. Olson, G. Gray, and S. Carter, Sol. Energy Mater. Sol. Cells 93, 519 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.022
12.
12. K. Yim, G. L. Whiting, C. E. Murphy, J. J. M. Halls, J. H. Burroughes, R. H. Friend, and J. Kim, Adv. Mater. 20, 3319 (2008).
http://dx.doi.org/10.1002/adma.200800735
13.
13. J. Z. Zhang and A. B. Ellis, J. Phys. Chem. 96, 2700 (1992).
http://dx.doi.org/10.1021/j100185a054
14.
14. C. R. Bullen and P. Mulvaney, Nano Lett. 4, 2303 (2004).
http://dx.doi.org/10.1021/nl0496724
15.
15. B. T. de Villers, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C 113, 18978 (2009).
http://dx.doi.org/10.1021/jp9082163
16.
16. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
http://dx.doi.org/10.1039/b510618b
17.
17. M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
18.
18. A. J. Moulé, J. B. Bonekamp, and K. Meerholz, J. Appl. Phys. 100, 094503 (2006).
http://dx.doi.org/10.1063/1.2360780
19.
19. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, J. Phys. Chem. C 114, 12784 (2010).
http://dx.doi.org/10.1021/jp103300v
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/3/10.1063/1.3678603
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Current density-voltage (J-V) curves of P3HT-cQD solar cells without (black line) and with F4TCNQ (red dashed line) under AM1.5G illumination. The blue markers indicate the operating points with the highest PCE. AFM images of active layers having F4TCNQ:cQDs weight ratios of (b) 0%, (c) 0.63%, and (d) 1.25%.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) The mean surface roughness (black dots) and the box plot of PCE distributions (red) are shown for different F4TCNQ concentrations, with the later ratio relative to the 0% F4TCNQ leftmost data. The distributions were obtained from 14, 3, 5, 7, and 5 solar cells for each dataset respectively from left to right, with black error bars giving the standard deviation of the surface roughness while the red dashed line goes through the mean PCE value. For each distribution, the mean J sc is 2.0 ± 0.9 mA/cm2, 3.0 ± 0.3 mA/cm2, 2.2 ± 0.7 mA/cm2, 2.7 ± 1.4 mA/cm2, and 1.6 ± 0.3 mA/cm2, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) ATR-FTIR spectra of (1) F4TCNQ powder, (2) cQD-F4TCNQ solid film, (3) P3HT-F4TCNQ solid film, and (4) P3HT-cQD-F4TCNQ solid film. (b) Absorption spectrum of the cQD-F4TCNQ blend (sample 2) in a dichlorobenzene solution.

Loading

Article metrics loading...

/content/aip/journal/apl/100/3/10.1063/1.3678603
2012-01-20
2014-04-16

Abstract

We integrate the electro-attractive conjugated molecule tetrafluoro-tetracyano-quinodimethane (F4TCNQ) in the active layer of polymer-CdSe colloidal quantum dot (cQD) solar cells. The addition of this molecule enhances cQD dispersion inside the polymer. In tuning its concentration, we can optimize the active layer morphology for chargeseparation and transport. A smoother morphology is likely the result of polymer chain adsorption on cQDs via F4TCNQ which increases the steric barrier between cQDs. Our most optimized device has a F4TCNQ:cQDs weight ratio of 0.5% improving the power conversion efficiency by a factor ∼2.3.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/3/1.3678603.html;jsessionid=19it97replyw0.x-aip-live-06?itemId=/content/aip/journal/apl/100/3/10.1063/1.3678603&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Morphological control of hybrid polymer-quantum dot solar cells with electron acceptor ligands
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/3/10.1063/1.3678603
10.1063/1.3678603
SEARCH_EXPAND_ITEM