1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Transforming graphite to nanoscale diamonds by a femtosecond laser pulse
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/4/10.1063/1.3678190
1.
1. F. P. Bundy, H. T. Hall, and H. M. Strong, Nature 176, 51 (1955).
http://dx.doi.org/10.1038/176051a0
2.
2. M. Baidakova and A. Vul’, J. Phys. D: Appl. Phys. 40, 6300 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S14
3.
3. M. Van Thiel and F. H. Ree, J. Appl. Phys. 62, 1761 (1987).
http://dx.doi.org/10.1063/1.339575
4.
4. F. Banhart and P. M. Ajayan, Nature 382, 433 (1996).
http://dx.doi.org/10.1038/382433a0
5.
5. A. Dunlop, G. Jaskierowicz, P. M. Ossi, and S. Della-Negra, Phys. Rev B 76, 155403 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155403
6.
6. G. W. Yang, J. B. Wang, and Q. X. Liu, J. Phys.: Cond. Mat. 10, 7923 (1998).
http://dx.doi.org/10.1088/0953-8984/10/35/024
7.
7. G. W. Yang and J. B. Wang, Appl. Phys. A 72, 475 (2001).
http://dx.doi.org/10.1007/s003390000537
8.
8. M. D. Shirk and P. A. Molian, Carbon 39, 1183 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00236-0
9.
9. M. Lenner, A. Kaplan, Ch. Huchon, and R. E. Palmer, Phys. Rev. B 79, 184105 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.184105
10.
10. T. Sano, K. Takahashi, O. Sakata, M. Okoshi, N. Inoue, K. F. Kobayashi, and A. Hirose, J. Phys.: Conf. Ser. 165, 012019 (2009).
http://dx.doi.org/10.1088/1742-6596/165/1/012019
11.
11. R. K. Raman, Y. Murooka, C.-Y. Ruan, T. Yang, S. Berber, and D. Tománek, Phys. Rev. Lett. 101, 077401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.077401
12.
12. J. Kanasaki, E. Inami, K. Tanimura, H. Ohnishi, and K. Nasu, Phys. Rev. Lett. 102, 087402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.087402
13.
13. P. Liu, C. Wang, J. Chen, N. Xu, G. W. Yang, N. Ke, and J. Xu, J. Phys. Chem. C 113, 12154 (2009).
http://dx.doi.org/10.1021/jp901359b
14.
14. J. Chen, G. Conache, M. Pistol, S. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, Nano Lett. 10, 1280 (2010).
http://dx.doi.org/10.1021/nl904040y
15.
15. M. Harbst, T. N. Hansen, C. Caleman, W. K. Fullagar, P. Jönsson, P. Sondhauss, O. Synnergren, and J. Larsson, Appl. Phys. A 81, 893 (2005).
http://dx.doi.org/10.1007/s00339-005-3299-9
16.
16. R. Nüske, C. V. K. Schmising, A. Jurgilaitis, H. Enquist, H. Navirian, P. Sondhauss, and J. Larsson, Rev. Sci. Instrum. 81, 013106 (2010).
http://dx.doi.org/10.1063/1.3290418
17.
17. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
18.
18. Y. Wang, D. C. Alsmeyer, and R. L. McCreery, Chem. Mat. 2, 557 (1990).
http://dx.doi.org/10.1021/cm00011a018
19.
19. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).
http://dx.doi.org/10.1063/1.1674108
20.
20. M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, Appl. Phys. Lett. 62, 3114 (1993).
http://dx.doi.org/10.1063/1.109154
21.
21. G. E. Bacon, Acta. Crystallogr. 3, 320 (1950).
http://dx.doi.org/10.1107/S0365110X50000872
22.
22. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).
http://dx.doi.org/10.1063/1.1841236
23.
23. H. Enquist, H. Navirian, T. Hansen, A. Lindenberg, P. Sondhauss, O. Synnergren, J. S. Wark, and J. Larsson, Phys. Rev. Lett. 98, 225502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.225502
24.
24. J. Steinbeck, G. Dresselhaus, and M. S. Dresselhaus, Int. J. Thermophys. 11, 789 (1990).
http://dx.doi.org/10.1007/BF01184345
25.
25. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.4129
26.
26. D. J. Erskine and W. J. Nellis, Nature 349, 317 (1991).
http://dx.doi.org/10.1038/349317a0
27.
27. D. S. Knight and W. B. White, J. Mater. Res. 4, 391 (1989).
http://dx.doi.org/10.1557/JMR.1989.0385
28.
28. M. E. Garcia, T. Dumitrica, and H. O. Jeschke, Appl. Phys. A 79, 855 (2004).
http://dx.doi.org/10.1007/s00339-004-2690-2
29.
29. A. Yu. Basharin, V. S. Dozhdikov, V. T. Dubinchuk, A. V. Kirillin, I. Yu. Lysenko, M. A. Turchaninov, Tech. Phys. Lett. 35, 428 (2009).
http://dx.doi.org/10.1134/S1063785009050137
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/4/10.1063/1.3678190
Loading
/content/aip/journal/apl/100/4/10.1063/1.3678190
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/4/10.1063/1.3678190
2012-01-23
2014-10-02

Abstract

Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-raypowderdiffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/4/1.3678190.html;jsessionid=6sfr9r1oqomk8.x-aip-live-03?itemId=/content/aip/journal/apl/100/4/10.1063/1.3678190&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transforming graphite to nanoscale diamonds by a femtosecond laser pulse
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/4/10.1063/1.3678190
10.1063/1.3678190
SEARCH_EXPAND_ITEM