1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Micro-imprinted prism substrate for self-aligned short channel organic transistors on a flexible substrate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/4/10.1063/1.3679119
1.
1. Z. Bao and J. Locklin, Organic Field-Effect Transistors (CRC Press, Boca Raton, FL, 2007).
2.
2. E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, IEEE J. Solid State Circuits 42, 84 (2007).
http://dx.doi.org/10.1109/JSSC.2006.886556
3.
3. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 101, 9966 (2004).
http://dx.doi.org/10.1073/pnas.0401918101
4.
4. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nat. Mater. 9, 1015 (2010).
http://dx.doi.org/10.1038/nmat2896
5.
5. D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson, Appl. Phys. Lett. 74, 3302 (1999).
http://dx.doi.org/10.1063/1.123325
6.
6. M. Halik, H. Klauk, U. Zschieschang, T. Kriem, G. Schmid, W. Radlik, and K. Wussow, Appl. Phys. Lett. 81, 289 (2002).
http://dx.doi.org/10.1063/1.1491604
7.
7. M. Nurul Islam and B. Mazhari, Solid-State Electron. 53, 1067 (2009).
http://dx.doi.org/10.1016/j.sse.2009.06.013
8.
8. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<>1.0.CO;2-#
9.
9. I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, IEEE Trans. Electron Devices 48, 1060 (2001).
http://dx.doi.org/10.1109/16.925226
10.
10. M. Uno, K. Nakayama, J. Soeda, Y. Hirose, K. Miwa, T. Uemura, A. Nakao, K. Takimiya, and J. Takeya, Adv. Mater. 23, 3047 (2011).
http://dx.doi.org/10.1002/adma.201101179
11.
11. T. Takano, H. Yamauchi, M. Iizuka, M. Nakamura, and K. Kudo, Appl. Phys. Express 2, 071501 (2009).
http://dx.doi.org/10.1143/APEX.2.071501
12.
12. M. Uno, I. Doi, K. Takimiya, and J. Takeya, Appl. Phys. Lett. 94, 103307 (2009).
http://dx.doi.org/10.1063/1.3098404
13.
13. Y. Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, Nat. Nanotechnol. 2, 784 (2007).
http://dx.doi.org/10.1038/nnano.2007.365
14.
14. T. Hyodo, F. Morita, S. Naka, H. Okada, and H. Onnagawa, Jpn. J. Appl. Phys. 43, 2323 (2004).
http://dx.doi.org/10.1143/JJAP.43.2323
15.
15. M. Ando, M. Kawasaki, S. Imazeki, H. Sasaki, and T. Kamata, Appl. Phys. Lett. 85, 1849 (2004).
http://dx.doi.org/10.1063/1.1784871
16.
16. U. Palfinger, C. Auner, H. Gold, A. Haase, J. Kraxner, T. Haber, M. Sezen, W. Grogger, G. Domann, G. Jakopic, J. R. Krenn, and B. Stadlober, Adv. Mater. 22, 5115 (2010).
http://dx.doi.org/10.1002/adma.201001947
17.
17. N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
http://dx.doi.org/10.1126/science.1081279
18.
18. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
http://dx.doi.org/10.1126/science.272.5258.85
19.
19. K.-E. Elers, T. Blomberg, M. Peussa, B. Aitchison, S. Haukka, and S. Marcus, Chem. Vap. Deposition 12, 13 (2006).
http://dx.doi.org/10.1002/cvde.v12:1
20.
20. Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, Appl. Phys. Lett. 96, 133306 (2010).
http://dx.doi.org/10.1063/1.3336009
21.
21. F. D. Fleischli, K. Sidler, M. Schaer, V. Savu, J. Brugger, and L. Zuppiroli, Org. Electron. 12, 336 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.12.004
22.
22. F. Ante, F. Letzkus, J. Butschke, U. Zschieschang, K. Kern, J. N. Burghartz, and H. Klauk, IEDM Tech. Dig. 2010, 516.
23.
23. T. Minari, T. Nemoto, and S. Isoda, J. Appl. Phys. 99, 034506 (2006).
http://dx.doi.org/10.1063/1.2169872
24.
24. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, NJ, 2000).
25.
25. J. R. Hauser, IEEE Trans. Educ. 36, 363 (1993).
http://dx.doi.org/10.1109/13.241612
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/4/10.1063/1.3679119
Loading
/content/aip/journal/apl/100/4/10.1063/1.3679119
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/4/10.1063/1.3679119
2012-01-23
2014-10-30

Abstract

Using a simple micro-imprinting process on flexible substrates, we demonstrate fabrication of self-aligned short channel organic thin film transistors (OTFTs) with significantly reduced parasitic capacitance. The surface topology resulting from the imprinted prism-like structures enables accurate alignment of both the gate and source-drain electrodes. The parasitic overlap capacitance was reduced by 80%, which enables twice higher transition frequency (fT = 10.1 kHz) compared with conventional top-contact OTFT devices. The prism-OTFTs were applied to both p-type (pentacene) and n-type (C60) organic semiconductors to implement low voltage complementary inverters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/4/1.3679119.html;jsessionid=4bs8fad1774nj.x-aip-live-02?itemId=/content/aip/journal/apl/100/4/10.1063/1.3679119&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Micro-imprinted prism substrate for self-aligned short channel organic transistors on a flexible substrate
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/4/10.1063/1.3679119
10.1063/1.3679119
SEARCH_EXPAND_ITEM