1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhanced carrier injection in pentacene thin-film transistors by inserting a MoO3-doped pentacene layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/4/10.1063/1.3680249
1.
1. S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
http://dx.doi.org/10.1063/1.121205
2.
2. Y. N. Li, Y. L. Wu, S. Gardner, and B. S. Ong, Adv. Mater. (Weinheim, Ger.) 17, 849 (2005).
http://dx.doi.org/10.1002/adma.v17:7
3.
3. A. L. Briseno, M. Roberts, M. M. Ling, H. Moon, E. J. Nemanick, and Z. N. Bao, J. Am. Chem. Soc. 128, 3880 (2006).
http://dx.doi.org/10.1021/ja058226v
4.
4. C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
http://dx.doi.org/10.1063/1.2126140
5.
5. D. Kumaki, T. Umeda, and S. Tokito, Appl. Phys. Lett. 92, 013301 (2005).
http://dx.doi.org/10.1063/1.2828711
6.
6. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, Nature (London) 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
7.
7. S. Hamwi, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 99, 053301 (2011).
http://dx.doi.org/10.1063/1.3617427
8.
8. J. Qiu, Z. B. Wang, M. G. Helander, and Z. H. Lu, Appl. Phys. Lett. 99, 153305 (2011).
http://dx.doi.org/10.1063/1.3644159
9.
9. C. K. Chan, W. Zhao, A. Kahn, and I. G. Hill, Appl. Phys. Lett. 94, 203306 (2009).
http://dx.doi.org/10.1063/1.3138131
10.
10. S. P. Tiwari, W. J. Potscavage, Jr., T. Sajoto, S. Barlow, S. R. Marder, and B. Kippelen, Org. Electron. 11, 860 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.01.029
11.
11. J. Meyer, S. Hamwi, T. Bülow, H. H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
http://dx.doi.org/10.1063/1.2784176
12.
12. C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
http://dx.doi.org/10.1063/1.2126140
13.
13. A. G. F. Janssen, T. Riedl, S. Hamwi, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 91, 073519 (2007).
http://dx.doi.org/10.1063/1.2772208
14.
14. F.-C. Chen and C.-H. Lin, J. Phys. D: Appl. Phys. 43, 025104 (2010).
http://dx.doi.org/10.1088/0022-3727/43/2/025104
15.
15. W.-J. Shin, J.-Y. Lee, J. C. Kim, T.-H. Yoon, T.-S. Kim, and O.-K. Song, Org. Electron. 9, 333 (2008).
http://dx.doi.org/10.1016/j.orgel.2007.12.001
16.
16. S. Hamwi, J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 94, 253307 (2009).
http://dx.doi.org/10.1063/1.3159824
17.
17. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
18.
18. S. D. Ha, J. Meyer, and A. Kahn, Phys. Rev. B 82, 155434 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155434
19.
19. D. Kumaki, T. Umeda, and S. Tokito, Appl. Phys. Lett. 92, 013302 (2008).
http://dx.doi.org/10.1063/1.2830695
20.
20. Y. Kim, M. Shin, H. Kim, Y. Ha, and C. S. Ha, J. Phys. D: Appl. Phys. 41, 225101 (2008).
http://dx.doi.org/10.1088/0022-3727/41/22/225101
21.
21. Z. Wang, Y. Lou, S. Naka, and H. Okada, Appl. Phys. Lett. 98, 063302 (2011).
http://dx.doi.org/10.1063/1.3554391
22.
22. Z. Wang, Y. Lou, S. Naka, and H. Okada, ACS Appl. Mater. Interface 3, 2496 (2011).
http://dx.doi.org/10.1021/am2003729
23.
23. Y. Lou, Z. Wang, S. Naka, and H. Okada, Appl. Phys. Lett. 99, 033305 (2011).
http://dx.doi.org/10.1063/1.3615711
24.
24. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
25.
25. A. A. Virkar, S. Mannsfeld, Z. N. Bao, and N. Stingelin, Adv. Mater. (Weinheim, Ger.) 22, 3857 (2010).
http://dx.doi.org/10.1002/adma.200903193
26.
26. D. Knipp, R. A. Street, and A. R. Volkel, Appl. Phys. Lett. 82, 3907 (2003).
http://dx.doi.org/10.1063/1.1578536
27.
27. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini, and D. M. deLeeuw, Phys. Rev. Lett. 92, 116802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.116802
28.
28. H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, Adv. Funct. Mater. (Weinheim, Ger.) 17, 3639 (2007).
http://dx.doi.org/10.1002/adfm.200700207
29.
29. S. Wang, T. Minari, T. Miyadera, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 93, 043311 (2008).
http://dx.doi.org/10.1063/1.2967193
30.
30. C.-C. Chang, M.-T. Hsieh, J.-F. Chen, S.-W. Hwang, and C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006).
http://dx.doi.org/10.1063/1.2405856
31.
31. F. Wang, X. Qiao, T. Xiong, and D. Ma, Org. Electron. 9, 985 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.07.009
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.3680249 for atomic force microscopy (AFM) images of pentacene films with and without different thin layer. [Supplementary Material]
33.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/4/10.1063/1.3680249
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Device structure of MoO3-doped pentacene OTFT under investigation.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Drain current vs drain voltage characteristics of pentacne OTFTs. (a) without injection layer; (b) with 10 nm MoO3 injection layer; and (c) with 10 nm MoO3-doped pentacene injection layer.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Transfer characteristics of pentacne OTFTs corresponding to without injection layer, with 10 nm MoO3 injection layer, and with 10 nm MoO3-doped pentacene injection layer at VG  = −4 V.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Temperature dependence of the ID-VD characteristics at a fixed gate voltage of 0 V in the OTFTs. (a) without and (b) with 10 nm MoO3-doped pentacene layer. (c) and (d) are the corresponding relationship between ln(I 0/T 2) and 1/T.

Image of FIG. 5.

Click to view

FIG. 5.

A schematic energy level of the materials under investigation for (a) without injection layer; (b) with 10 nm MoO3 injection layer; and (c) with 10 nm MoO3-doped pentacene injection layer.

Loading

Article metrics loading...

/content/aip/journal/apl/100/4/10.1063/1.3680249
2012-01-27
2014-04-24

Abstract

We report on the enhanced carrier injection in pentacene thin-film transistors with a thin MoO3-doped pentacene layer between pentacene semiconductor and the source-drain electrodes.Device performance including drain current, field effect mobility, and threshed voltage are improved by employing a MoO3-doped pentacene thin layer. The barrier height at the Au/pentacene interface is lowered from 0.12 to 0.05 eV after inserting a MoO3-doped pentacene thin layer between them. The reduced barrier height is attributed to the formation of a good contact between MoO3-doped pentacene and Au owing to smoothed surface morphology of pentancene and suitable band bending by MoO3doping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/4/1.3680249.html;jsessionid=e8b79807comnf.x-aip-live-03?itemId=/content/aip/journal/apl/100/4/10.1063/1.3680249&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced carrier injection in pentacene thin-film transistors by inserting a MoO3-doped pentacene layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/4/10.1063/1.3680249
10.1063/1.3680249
SEARCH_EXPAND_ITEM