1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/5/10.1063/1.3681791
1.
1. M. Kiguchi, M. Nakayama, T. Shimada, and K. Saiki, Phys. Rev. B 71, 1 (2005).
2.
2. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini, and D. De Leeuw, Phys. Rev. Lett. 92, 90 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.116802
3.
3. G. Horowitz, P. Lang, W. Kalb, and M. Mottaghi, in Proceedings of the International Symposium on Super-Functionality Organic Devices IPAP Conference Series (The Institute of Pure and Applied Physics, Chiba, Japan, 2005), Vol. 6, pp. 125129.
4.
4. S. Steudel, S. De Vusser, S. De Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett. 85, 4400 (2004).
http://dx.doi.org/10.1063/1.1815042
5.
5. S. E. Fritz, T. W. Kelley, and C. D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).
http://dx.doi.org/10.1021/jp044318f
6.
6. J. Veres, S. Ogier, G. Lloyd, and D. De Leeuw, Chem. Mater. 16, 4543 (2004).
http://dx.doi.org/10.1021/cm049598q
7.
7. J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. Mohialdin Khaffaf, Adv. Funct. Mater. 13, 199 (2003).
http://dx.doi.org/10.1002/adfm.200390030
8.
8. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
9.
9. I. G. Hill, C. M. Weinert, L. Kreplak, and B. P. Zyl, Appl. Phys. A 95, 81 (2008).
http://dx.doi.org/10.1007/s00339-008-4992-2
10.
10. S. Y. Yang, K. Shin, and C. E. Park, Adv. Funct. Mater. 15, 1806 (2005).
http://dx.doi.org/10.1002/adfm.200400486
11.
11. Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18, 606 (1997).
http://dx.doi.org/10.1109/55.644085
12.
12. K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa, and T. Kamata, Appl. Phys. Lett. 91, 192112 (2007).
http://dx.doi.org/10.1063/1.2812573
13.
13. S. Steudel, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett. 85, 5550 (2004).
http://dx.doi.org/10.1063/1.1832732
14.
14. N. Koch, Chem. Phys. Chem. 8, 1438 (2007).
http://dx.doi.org/10.1002/cphc.200700177
15.
15. N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, Appl. Phys. Lett. 82, 70 (2003).
http://dx.doi.org/10.1063/1.1532102
16.
16. P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, and P. Calas, Org. Electron. 9, 419 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.01.004
17.
17. I. H. Campbell, J. D. Kress, R. L. Martin, and D. L. Smith, Appl. Phys. 71, 3528 (1997).
18.
18. B. De Boer, A. Hadipour, M. M. Mandoc, T. Van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621 (2005).
http://dx.doi.org/10.1002/adma.200401216
19.
19. K. Asadi, F. Gholamrezaie, E. C. P. Smits, P. W. M. Blom, and B. De Boer, J. Mater. Chem. 17, 1947 (2007).
http://dx.doi.org/10.1039/b617995a
20.
20. P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, Solid-State Electron. 47, 259 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00204-6
21.
21. A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, J. Phys. Chem. 98, 7577 (1994).
http://dx.doi.org/10.1021/j100082a031
22.
22. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).
http://dx.doi.org/10.1002/app.1969.070130815
23.
23. S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, Appl. Phys. Lett. 91, 063514 (2007).
http://dx.doi.org/10.1063/1.2768934
24.
24. W. R. Salaneck, M. Logdlund, M. Fahlman, G. Greczynski, and T. Kugler, Mater. Sci. 34, 121 (2001).
25.
25. G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, Appl. Phys. Lett. 87, 243512 (2005).
http://dx.doi.org/10.1063/1.2146059
26.
26. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Nano Lett. 3, 193 (2003).
http://dx.doi.org/10.1021/nl0259232
27.
27. S. Kim, H. Yang, S. Yang, K. Hong, D. Choi, C. Yang, D. Chung, and C. Park, Org. Electron. 9, 673 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.004
28.
28. J. C. Ribierre, S. Ghosh, K. Takaishi, T. Muto, and T. Aoyama, J. Phys. D 44, 205102 (2011).
http://dx.doi.org/10.1088/0022-3727/44/20/205102
29.
29. G. Robert, V. Derycke, M. F. Goffman, S. Lenfant, D. Vuillaume, and J.-P. Bourgoin, Appl. Phys. Lett. 93, 143117 (2008).
http://dx.doi.org/10.1063/1.2992586
30.
30. G. Horowitz and M.E. Hajlaoui, Synth. Met. 122, 185 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)01351-5
31.
31. S. Y. Yang, K. Shin, and C. E. Park, Adv. Funct. Mater. 15, 1806 (2005).
http://dx.doi.org/10.1002/adfm.200400486
32.
32. J. Park, J.-H. Bae, W.-H. Kim, S.-D. Lee, J. S. Gwag, D. W. Kim, J. C. Noh, and J. S. Choi, Solid-State Electron. 54, 1650 (2010).
http://dx.doi.org/10.1016/j.sse.2010.08.004
33.
33. D. H. Dinh, L. Vellutini, B. Bennetau, C. Dejous, D. Rebière, E. Pascal, D. Moynet, C. Belin, B. Desbat, C. Labrugère, and J.-P. Pillot, Langmuir 25, 5526 (2009).
http://dx.doi.org/10.1021/la804088d
34.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/5/10.1063/1.3681791
Loading
/content/aip/journal/apl/100/5/10.1063/1.3681791
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/5/10.1063/1.3681791
2012-02-03
2014-08-20

Abstract

Surface modifications of the dielectric and the metal of pentacene-based field effect transistors using self-assembled monolayer (SAM) were studied. First, a low interfacial trap density and pentacene 2D-growth were favored by the nonpolar and low surface energy of octadecyltrichlorosilane-based SAM. This treatment leaded to increased mobility up to 0.4 cm2 V−1 s−1 and no observable hysteresis on transfer curves. Second, reduced hole injection barrier and contact resistance were achieved by fluorinated thiols deposited on gold contacts resulting in an increased mobility up to 0.6 cm2 V−1 s−1. Finally, a high mobility of 2.6 cm2 V−1 s−1 was achieved by cumulative effects of both treatments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/5/1.3681791.html;jsessionid=vbvk2jfg4tgb.x-aip-live-02?itemId=/content/aip/journal/apl/100/5/10.1063/1.3681791&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/5/10.1063/1.3681791
10.1063/1.3681791
SEARCH_EXPAND_ITEM