1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/6/10.1063/1.3683484
1.
1. B. M. Novak, Adv. Mater. 5, 422 (1993).
http://dx.doi.org/10.1002/adma.v5:6
2.
2. J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, and W. I. Park, J. Phys. Chem. C 113, 19134 (2009).
http://dx.doi.org/10.1021/jp9078713
3.
3. W. I. Park, C.-H. Lee, J. M. Lee, N.-J. Kim, and G.-C. Yi, Nanoscale 3, 3522 (2011).
http://dx.doi.org/10.1039/c1nr10370a
4.
4. D. H. Lee, J. A. Lee, W. J. Lee, and S. O. Kim, Small 7, 95 (2011).
http://dx.doi.org/10.1002/smll.201001168
5.
5. J. M. Lee, J. W. Choung, J. Yi, D. H. Lee, M. Samal, D. K. Yi, C.-H. Lee, G.-C. Yi, U. Paik, J. A. Rogers et al., Nano Lett. 10, 2783 (2010).
http://dx.doi.org/10.1021/nl100648y
6.
6. H. Wang, L.-F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, J. Am. Chem. Soc. 132, 13978 (2010).
http://dx.doi.org/10.1021/ja105296a
7.
7. X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).
http://dx.doi.org/10.1021/nl072838r
8.
8. J. Yi, J. M. Lee, and W. I. Park, Sens. Actuators B 155, 264 (2011).
http://dx.doi.org/10.1016/j.snb.2010.12.033
9.
9. D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.-M. Yoon, S. J. Chae, Y. H. Lee et al., Adv. Mater. 22, 2187 (2010).
http://dx.doi.org/10.1002/adma.200903815
10.
10. D.-S. Leem, T. Lee, and T.-Y. Seong, Solid-State Electron. 51, 793 (2007).
http://dx.doi.org/10.1016/j.sse.2007.02.038
11.
11. C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, J. Appl. Phys. 93, 9383 (2003).
http://dx.doi.org/10.1063/1.1571962
12.
12. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, J. R. Wendt, M. M. Sigalas, S. R. J. Brueck, D. Li, and M. Shagam, Proc. SPIE 5739, 102 (2005).
http://dx.doi.org/10.1117/12.591218
13.
13. T. S. Kim, S.-M. Kim, Y. H. Jang, and G. Y. Jung, Appl. Phys. Lett. 91, 171114 (2007).
http://dx.doi.org/10.1063/1.2802557
14.
14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nature Mater. 3, 601 (2004).
http://dx.doi.org/10.1038/nmat1198
15.
15. J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, Appl. Phys. Lett. 99, 041115 (2011).
http://dx.doi.org/10.1063/1.3595941
16.
16. G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Park, B. H. Hong et al., Nanotechnology 21, 175201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/17/175201
17.
17. S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, Appl. Phys. Lett. 92, 121108 (2008).
http://dx.doi.org/10.1063/1.2903153
18.
18. K. Dai, C. B. Soh, S. J. Chua, L. Wang, and D. Huang, J. Appl. Phys. 109, 083110 (2011).
http://dx.doi.org/10.1063/1.3574441
19.
19. K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W Kim, Appl. Phys. Lett. 94, 071118 (2009).
http://dx.doi.org/10.1063/1.3077606
20.
20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc et al., Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
21.
21. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
22.
22. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008).
http://dx.doi.org/10.1007/s12274-008-8036-1
23.
23. J. Yi, D. H. Lee, and W. I. Park, Chem. Mater. 23, 3902 (2011).
http://dx.doi.org/10.1021/cm201188z
24.
24. M. Bruna and S. Borini, Appl. Phys. Lett. 94, 031901 (2009).
http://dx.doi.org/10.1063/1.3073717
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.3683484 for experimental methods and Figs. S1–S5. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/6/10.1063/1.3683484
Loading
/content/aip/journal/apl/100/6/10.1063/1.3683484
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/6/10.1063/1.3683484
2012-02-07
2014-09-01

Abstract

One-dimensional and two-dimensional hybrid structures, composed of vertical ZnOnanorods grown on large-area graphene, are successfully integrated onto the GaN/InGaN light emitting diodes(LEDs). Compared with GaNLED without transparent conducting electrode, current injection and light emission increased almost 2–3 times, respectively, by the introduction of graphene based conducting electrode. Additional ∼66% increase in light emission was achieved by growing the ZnOnanorods on the graphene, which is consistent with the finite difference time domain modeling result. Furthermore, electroluminescence intensity profiles confirm the uniform light emission with high brightness in GaNLED with the ZnO nanorods-graphene hybridelectrode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/6/1.3683484.html;jsessionid=36ifjquqbf4ua.x-aip-live-06?itemId=/content/aip/journal/apl/100/6/10.1063/1.3683484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/6/10.1063/1.3683484
10.1063/1.3683484
SEARCH_EXPAND_ITEM