1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/6/10.1063/1.3683484
1.
1. B. M. Novak, Adv. Mater. 5, 422 (1993).
http://dx.doi.org/10.1002/adma.v5:6
2.
2. J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, and W. I. Park, J. Phys. Chem. C 113, 19134 (2009).
http://dx.doi.org/10.1021/jp9078713
3.
3. W. I. Park, C.-H. Lee, J. M. Lee, N.-J. Kim, and G.-C. Yi, Nanoscale 3, 3522 (2011).
http://dx.doi.org/10.1039/c1nr10370a
4.
4. D. H. Lee, J. A. Lee, W. J. Lee, and S. O. Kim, Small 7, 95 (2011).
http://dx.doi.org/10.1002/smll.201001168
5.
5. J. M. Lee, J. W. Choung, J. Yi, D. H. Lee, M. Samal, D. K. Yi, C.-H. Lee, G.-C. Yi, U. Paik, J. A. Rogers et al., Nano Lett. 10, 2783 (2010).
http://dx.doi.org/10.1021/nl100648y
6.
6. H. Wang, L.-F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, J. Am. Chem. Soc. 132, 13978 (2010).
http://dx.doi.org/10.1021/ja105296a
7.
7. X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).
http://dx.doi.org/10.1021/nl072838r
8.
8. J. Yi, J. M. Lee, and W. I. Park, Sens. Actuators B 155, 264 (2011).
http://dx.doi.org/10.1016/j.snb.2010.12.033
9.
9. D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.-M. Yoon, S. J. Chae, Y. H. Lee et al., Adv. Mater. 22, 2187 (2010).
http://dx.doi.org/10.1002/adma.200903815
10.
10. D.-S. Leem, T. Lee, and T.-Y. Seong, Solid-State Electron. 51, 793 (2007).
http://dx.doi.org/10.1016/j.sse.2007.02.038
11.
11. C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, J. Appl. Phys. 93, 9383 (2003).
http://dx.doi.org/10.1063/1.1571962
12.
12. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, J. R. Wendt, M. M. Sigalas, S. R. J. Brueck, D. Li, and M. Shagam, Proc. SPIE 5739, 102 (2005).
http://dx.doi.org/10.1117/12.591218
13.
13. T. S. Kim, S.-M. Kim, Y. H. Jang, and G. Y. Jung, Appl. Phys. Lett. 91, 171114 (2007).
http://dx.doi.org/10.1063/1.2802557
14.
14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nature Mater. 3, 601 (2004).
http://dx.doi.org/10.1038/nmat1198
15.
15. J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, Appl. Phys. Lett. 99, 041115 (2011).
http://dx.doi.org/10.1063/1.3595941
16.
16. G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Park, B. H. Hong et al., Nanotechnology 21, 175201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/17/175201
17.
17. S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, Appl. Phys. Lett. 92, 121108 (2008).
http://dx.doi.org/10.1063/1.2903153
18.
18. K. Dai, C. B. Soh, S. J. Chua, L. Wang, and D. Huang, J. Appl. Phys. 109, 083110 (2011).
http://dx.doi.org/10.1063/1.3574441
19.
19. K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W Kim, Appl. Phys. Lett. 94, 071118 (2009).
http://dx.doi.org/10.1063/1.3077606
20.
20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc et al., Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
21.
21. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
22.
22. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008).
http://dx.doi.org/10.1007/s12274-008-8036-1
23.
23. J. Yi, D. H. Lee, and W. I. Park, Chem. Mater. 23, 3902 (2011).
http://dx.doi.org/10.1021/cm201188z
24.
24. M. Bruna and S. Borini, Appl. Phys. Lett. 94, 031901 (2009).
http://dx.doi.org/10.1063/1.3073717
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.3683484 for experimental methods and Figs. S1–S5. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/6/10.1063/1.3683484
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Schematic diagrams and photographs of the type I and II LEDs. (a) The schematic of type I LED with Gr and Gr/ZNRs window electrodes along with a photograph of the resulting device. (b) The schematic of the type II LED with bare and ZNRs window electrodes along with a photograph of the resulting device.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) and (b) Cross-sectional SEM images of the ZNRs-Gr hybrid structure on a GaN-based LED. (c) Cross-sectional TEM image of the ZNRs-Gr hybrid on a GaN based LED. (d) High-magnification TEM image of the heterointerface consisting of p-GaN, Ni/Au, Gr, and ZnO.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) I-V curves of the type I and II LEDs. (b) EL spectra of the type I and II GaN LEDs with four different top window electrodes (I-Gr, I-Gr/ZNRs, II-bare, and II-ZNRs) recorded at an applied voltage of 2.8 V. (c) EL intensity versus voltage curves of the GaN LEDs with different window electrodes.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) Schematic of the measurement method used to obtain the EL intensity profile of the type I GaN LED across two adjacent window electrodes of Gr (left) and Gr/ZNRs (right). (b) Optical microscopy (OM) images of the emitting GaN LEDs with the Gr/ZNRs electrode at an applied voltage of 2.6 V. The vertical scale was reduced by a factor of three to emphasize the brightness change depending on the window electrode. (c) EL intensity profile of the type I LED.

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) (a) Three-dimensional FDTD simulation results of the extraction efficiency of the LEDs with Gr and Gr/ZNRs window electrodes. (b) and (c) Simulated electric field distributions of the LEDs with Gr (b) and Gr/ZNRs (c) window electrodes.

Loading

Article metrics loading...

/content/aip/journal/apl/100/6/10.1063/1.3683484
2012-02-07
2014-04-18

Abstract

One-dimensional and two-dimensional hybrid structures, composed of vertical ZnOnanorods grown on large-area graphene, are successfully integrated onto the GaN/InGaN light emitting diodes(LEDs). Compared with GaNLED without transparent conducting electrode, current injection and light emission increased almost 2–3 times, respectively, by the introduction of graphene based conducting electrode. Additional ∼66% increase in light emission was achieved by growing the ZnOnanorods on the graphene, which is consistent with the finite difference time domain modeling result. Furthermore, electroluminescence intensity profiles confirm the uniform light emission with high brightness in GaNLED with the ZnO nanorods-graphene hybridelectrode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/6/1.3683484.html;jsessionid=4j0ngc13s5nhr.x-aip-live-03?itemId=/content/aip/journal/apl/100/6/10.1063/1.3683484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/6/10.1063/1.3683484
10.1063/1.3683484
SEARCH_EXPAND_ITEM