1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Graphene induced tunability of the surface plasmon resonance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/6/10.1063/1.3683534
1.
1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
3.
3. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, Nature 472, 74 (2011).
http://dx.doi.org/10.1038/nature09979
4.
4. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song et al., Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
5.
5. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, Nano Lett. 10, 490 (2010).
http://dx.doi.org/10.1021/nl903272n
6.
6. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. B 80, 4249 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4249
7.
7. A. Campion and P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998).
http://dx.doi.org/10.1039/a827241z
8.
8. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
http://dx.doi.org/10.1063/1.2836271
9.
9. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
10.
10. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn et al., Phys. Rev. Lett. 105, 127403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.127403
11.
11. S. Kawata, M. Ohtsu, and M. Irie, Near-field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001).
12.
12. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, J. Phys. Chem. C 114, 7509 (2010).
http://dx.doi.org/10.1021/jp911416a
13.
13. T. Okamoto and I. Yamaguchi, J. Phys. Chem. B 107, 10321 (2003).
http://dx.doi.org/10.1021/jp034537l
14.
14. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
15.
15. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
16.
16. B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, and A. Fert, Appl. Phys. Lett. 97, 092502 (2010).
http://dx.doi.org/10.1063/1.3476339
17.
17. D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, Nanotechnology 20, 375703 (2009).
http://dx.doi.org/10.1088/0957-4484/20/37/375703
18.
18. G. Isic, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic et al., J. Nanophotonics 5, 051809 (2011).
http://dx.doi.org/10.1117/1.3598162
19.
19. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, Orlando, Florida, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/6/10.1063/1.3683534
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) A Raman spectrum of single layer CVD graphene using an excitation wavelength of 532 nm. The inset of (a) shows the transmisstion data of a borosilicate glass substrate without and with graphene. (b) An illustration of the sample structure. The upper inset in (b) is a SEM image of Au nanoparticles formed on top of Al2O3. The lower inset in (b) is the cross section view of the device structure.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Transmission spectra of a glass substrate capped with different thicknesses of Al2O3.(b) Transmission spectra from samples of glass/graphene/Al2O3. (c) Transmission spectra from samples of glass/Al2O3/particles. (d) Transmission spectra from samples of glass/graphene/Al2O3/particles with various thicknesses of Al2O3. The inset of each figure illustrates the cross section view of the device structure. The arrow in (d) shows a shift in the resonance wavelength.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Dependence of the resonance wavelength and FWHM on the thickness of Al2O3. (b) Raman spectra of graphene samples after the deposition of Al2O3 and Au nanoparticles. (c) Calculation results of the surface plasmon resonance wavelength excited by vertical electric fields. (d) Calculation results based on lateral electric fields. The arrow shows a shift in the resonance wavelength. The inset in (c) is the schematic configuration of the structure used for calculation.

Loading

Article metrics loading...

/content/aip/journal/apl/100/6/10.1063/1.3683534
2012-02-09
2014-04-19

Abstract

Tunability of the surface plasmon resonance wavelength is demonstrated by varying the thickness of Al2O3 spacer layer inserted between the graphene and nanoparticles. By varying the spacer layer thickness from 0.3 to 1.8 nm, the resonance wavelength is shifted from 583 to 566 nm. The shift is due to a change in the electromagnetic field coupling strength between the localized surface plasmons excited in the goldnanoparticles and a single layer graphene film. In contrast, when the graphene film is absent from the system, no noticeable shift in the resonance wavelength is observed upon varying the spacer thickness.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/6/1.3683534.html;jsessionid=25i8tfdqyftwa.x-aip-live-03?itemId=/content/aip/journal/apl/100/6/10.1063/1.3683534&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Graphene induced tunability of the surface plasmon resonance
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/6/10.1063/1.3683534
10.1063/1.3683534
SEARCH_EXPAND_ITEM