1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Organic photovoltaic cells with nano-fabric heterojunction structure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/7/10.1063/1.3679097
1.
1. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
3.
3. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, J. Org. Chem. 60, 532 (1995).
http://dx.doi.org/10.1021/jo00108a012
4.
4. C. J. Brabec, F. Padinger, N. S. Sariciftci, and J. C. Hummelen, J. Appl. Phys. 85, 6866 (1999).
http://dx.doi.org/10.1063/1.370205
5.
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
6.
6. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. 68, 3120 (1996).
http://dx.doi.org/10.1063/1.115797
7.
7. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
8.
8. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
9.
9. J. S. Moon, J. K. Lee, S. Cho, J. Byun, and A. J. Heeger, Nano Lett. 9, 230 (2009).
http://dx.doi.org/10.1021/nl802821h
10.
10. E. Frankevich, Y. Maruyama, and H. Ogata, Chem. Phys. Lett. 214, 39 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85452-T
11.
11. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
http://dx.doi.org/10.1063/1.115503
12.
12. V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater. 13, 43 (2003).
http://dx.doi.org/10.1002/adfm.200390004
13.
13. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
http://dx.doi.org/10.1063/1.117834
14.
14. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, Nature Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
15.
15. V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006).
http://dx.doi.org/10.1002/adfm.200500420
16.
16. R. Schmidt, M. M. Ling, J. H. Oh, M. Winkler, M. Konemann, Z. Bao, and F. Würthner, Adv. Mater. 19, 3692 (2007).
http://dx.doi.org/10.1002/adma.200701478
17.
17. J. H. Oh, Y. S. Sun, R. Schmidt, M. F. Toney, D. Nordlund, M. Konemann, F. Würthner, and Z. N. Bao, Chem. Mater. 21, 5508 (2009).
http://dx.doi.org/10.1021/cm902531d
18.
18. C. Li, M. Y. Liu, N.G. Pschirer, M. Baumgarten, and K. Müllen, Chem. Rev. 110, 6817 (2010).
http://dx.doi.org/10.1021/cr100052z
19.
19. A. Tolkki, E. Vuorimaa, V. Chukharev, H. Lemmetyinen, P. Ihalainen, J. Peltonen, V. Dehm, and F. Würthner, Langmuir 26, 6630 (2010).
http://dx.doi.org/10.1021/la903978y
20.
20. S. Ko, R. Mondal, C. Risko, J. K. Lee, S. Hong, M. D. McGehee, J.-L. Brédas, and Z. Bao, Macromolecules 43, 6685 (2010).
http://dx.doi.org/10.1021/ma101088f
21.
21. Y. P. Yi, V. Coropceanu, and J.-L. Brédas, J. Mater. Chem. 21, 1479 (2011).
http://dx.doi.org/10.1039/c0jm02467h
22.
22. A. L. Briseno, S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A. Jenekhe, Z. Bao, and Y. Xia, Nano Lett. 7, 2847 (2007).
http://dx.doi.org/10.1021/nl071495u
23.
23. A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao, and Y. Xia, Mater. Today 11, 38 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70055-5
24.
24. A. J. Epstein and Y. Min, U.S. Provisional Patent No. 61/391,436 (8 October 2010).
25.
25. B. A. Gregg, J. Sprague, and M. W. Peterson, J. Phys. Chem. B 101, 5362 (1997).
http://dx.doi.org/10.1021/jp9703263
26.
26. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 6849 (2003).
http://dx.doi.org/10.1063/1.1620683
27.
27. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<>1.0.CO;2-R
28.
28. R. H. Parmenter and W. Ruppel, J. Appl. Phys. 30, 1548 (1959).
http://dx.doi.org/10.1063/1.1734999
29.
29. M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3679097
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Chemical structure of PDI-C8 molecule, (b) AFM image of isolated PDI-C8 nanofibers drop cast from solution, and (c) Optical absorbance (solid lines) and photoluminescence (dashed lines) of PDI-C8 solution in methanol (dark lines) and film (gray lines).

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Four types of OPV cell structures and corresponded energy diagrams are constructed to investigate the role of PDI-C8 nanofibers, where types I and III have active layers of pure P3HT, while types II and IV have active layers of the mixture of P3HT and PDI-C8 nanofibers that form an nano-fabric heterojunction.

Image of FIG. 3.

Click to view

FIG. 3.

IV characteristic curves of the four device structures. Upper plot corresponds to types I and II OPV’s and lower plot to types III and IV OPV’s.

Tables

Generic image for table

Click to view

Table I.

Key parameters of four device configurations comparing the effect of PDI nanofibers on device performance.

Loading

Article metrics loading...

/content/aip/journal/apl/100/7/10.1063/1.3679097
2012-02-13
2014-04-20

Abstract

Organic photovoltaiccells containing electron-transporting organic nanofibers in the form of “nanofabrics” are investigated. Nano-fabric heterojunctions of poly(3-hexylthiophene) and electron-transporting nanofibers significantly improve short-circuit current density in organic photovoltaiccells. The nanofibers and nanofabric are synthesized from organic electron-transporting material bis(octyl)-perylenediimide (PDI-C8). The PDI-C8 based nano-fabric’s electron mobility is measured to be 0.08 cm2/V s. The nanofabric improves charge collection by expanding the interfacial acceptor-donor area while simultaneously providing dedicated electron transport pathways to the LiF/Al electrodes. An increase in fill factor is observed for photovoltaic cells incorporating the nanofabric heterojunctions and is attributed to efficient removal of space charge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/7/1.3679097.html;jsessionid=apt24b4hjicqf.x-aip-live-06?itemId=/content/aip/journal/apl/100/7/10.1063/1.3679097&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic photovoltaic cells with nano-fabric heterojunction structure
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3679097
10.1063/1.3679097
SEARCH_EXPAND_ITEM