1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Sign change in the organic magnetoresistance of tris(8-hydroxyquinolinato)aluminum upon annealing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/7/10.1063/1.3684873
1.
1. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
2.
2. Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Khler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205202
3.
3. P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 102, 073710 (2007).
http://dx.doi.org/10.1063/1.2787158
4.
4. B. Hu and Y. Wu, Nat. Mater. 6, 985 (2007).
http://dx.doi.org/10.1038/nmat2034
5.
5. F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys. Rev. Lett. 99, 257201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.257201
6.
6. F. J. Wang, H. Bässler, and Z. V. Vardeny, Phys. Rev. Lett. 101, 236805 (2003).
http://dx.doi.org/10.1103/PhysRevLett.101.236805
7.
7. J. D. Bergeson, V. Prigodin, D. M. Lincoln, and A. Epstein, Phys. Rev. Lett. 100, 067201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067201
8.
8. Y. L. Lei, Q. L. Song, Y. Zhang, P. Chen, R Liu, Q. M. Zhang, and Z. H. Xiong, Org. Electron. 10, 1288 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.07.010
9.
9. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
10.
10. Z. Xu and B. Hu, Adv. Funct. Mater. 18, 2611 (2008).
http://dx.doi.org/10.1002/adfm.200800331
11.
11. A. I. Shushin, Phys. Rev. B 84, 115212 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115212
12.
12. S. P. Kersten, A. J. Schellenkens, B. Koopmans, and P. A. Bobbert, Phys. Rev. Lett. 106, 197402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.197402
13.
13. D. R. McCamey, K. J. van Schooten, W. J. Baker, S.-Y. Lee, S.-Y. Paik, J. M. Lupton, and C. Boehme, Phys. Rev. Lett. 104, 017601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.017601
14.
14. P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, and M. R. J. Gibbs, Phys. Rev. B 75, 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
15.
15. Y. Wu, Z. Xu, and B. Hu, Phys. Rev. B 75, 035214 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035214
16.
16. V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156, 757 (2006).
http://dx.doi.org/10.1016/j.synthmet.2006.04.010
17.
17. T. D. Nguyen, B. R. Gautam, E. Ehrenfreund, and Z. V. Vardeny, Phys. Rev. Lett. 105, 166804 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.166804
18.
18. T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, Nat. Mater. 9, 345 (2010).
http://dx.doi.org/10.1038/nmat2633
19.
19. C. Gärditz and A. G. Muckl, J. Appl. Phys. 98, 104507 (2005).
http://dx.doi.org/10.1063/1.2132512
20.
20. S.-J. Kim and T. E. Karis, J. Mater. Res. 10, 2128 (1995).
http://dx.doi.org/10.1557/JMR.1995.2128
21.
21. M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, and W. Brutting, Adv. Funct. Mater. 13, 108 (2003).
http://dx.doi.org/10.1002/adfm.200390015
22.
22. S. P. Kersten, A. H. Schellekens, B. Koopmans, and P. A. Bobbert, Synth. Met. 161, 613 (2011).
http://dx.doi.org/10.1016/j.synthmet.2010.11.040
23.
23. R. A. Street, Phys. Rev. B 84, 075208 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075208
24.
24. H. Kang, C. H. Park, J. Lim, C. Lee, W. Kang, and C. S. Yoon, “Power law behavior of magnetoresistance in tris(8-hydroxyquinolinato)aluminum-based organic light-emitting diodes” (unpublished).
25.
25. M. S. Xu and J. B. Xu, Thin Solid Films 491, 317 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.05.025
26.
26. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc. 122, 5147 (2000).
http://dx.doi.org/10.1021/ja993608k
27.
27. G. G. Malliaras, Y. Shen, D. H. Dunlap, H. Murata, and Z. H. Kafafi, Appl. Phys. Lett. 79, 2582 (2001).
http://dx.doi.org/10.1063/1.1410343
28.
28. M. Shao, Y. Dai, D. Ma, and B. Hu, Appl. Phys. Lett. 99, 073302 (2011).
http://dx.doi.org/10.1063/1.3623435
29.
29. S. Majumdar, H. S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho, and R. Österbacka, Phys. Rev. B 79, 201202R (2009).
30.
30. R. C. Johnson and R. E. Merrifield, Phys. Rev. B 1, 896 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.896
31.
31. W. Helfrich and W. G. Schneidere, Phys. Rev. Lett. 14, 229 (1965).
http://dx.doi.org/10.1103/PhysRevLett.14.229
32.
32. Y. Zhang, R. Liu, Y. L. Lei, and Z. H. Xiong, Appl. Phys. Lett. 94, 083307 (2009).
http://dx.doi.org/10.1063/1.3089844
33.
33. Y. L. Lei, Y. Zhang, R. Liu, P. Chen, Q. L. Song, and X. H. Xiong, Org. Electron. 10, 889 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.04.016
34.
34. M. Cölle and C. Gärditz, Appl. Phys. Lett. 84, 3160 (2004).
http://dx.doi.org/10.1063/1.1711185
35.
35. R. M. Mehra, S. C. Agarwal, S. Rani, R. Shyam, and P. C. Mathur, Thin Solid Films 76, 379 (1981).
http://dx.doi.org/10.1016/0040-6090(81)90536-8
36.
36. R. M. Mehra, R. Shyam, and P. C. Mathur, Thin Solid Films 100, 81 (1983).
http://dx.doi.org/10.1016/0040-6090(83)90464-9
37.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3684873
Loading
/content/aip/journal/apl/100/7/10.1063/1.3684873
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/7/10.1063/1.3684873
2012-02-13
2014-07-25

Abstract

We report the sign change in the magnetoresistance of a tris(8-hydroxyquinolinato)aluminum film with the morphological change from amorphous to crystalline state upon annealing. The negative component of the magnetoresistance followed power law behavior, whereas the positive one showed non-Lorentzian function behavior. The decreasing absolute values of the negative component with increased annealing temperature may be understood by both intersystem-crossing-based mechanism and quenching of triplet excitons. The increasing values of the positive component with increased annealing temperature may be explained by the increase in the hopping probability of charge carriers with increased crystallinity of the film.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/7/1.3684873.html;jsessionid=bsjhpqph6681k.x-aip-live-02?itemId=/content/aip/journal/apl/100/7/10.1063/1.3684873&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sign change in the organic magnetoresistance of tris(8-hydroxyquinolinato)aluminum upon annealing
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3684873
10.1063/1.3684873
SEARCH_EXPAND_ITEM