1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electron mobility determination of efficient phosphorescent iridium complexes with tetraphenylimidodiphosphinate ligand via transient electroluminescence method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/7/10.1063/1.3684971
1.
1. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 123(18 ), 4304 (2001).
http://dx.doi.org/10.1021/ja003693s
2.
2. J. W. Kang, S. H. Lee, H. D. Park, W. I. Jeong, K. M. Yoo, Y. S. Park, and J. J. Kim, Appl. Phys. Lett. 90(22 ), 223508 (2007).
http://dx.doi.org/10.1063/1.2745224
3.
3. H. H. Fong, K. C. Lun, and S. K. So, Chem. Phys. Lett. 353(5–6 ), 407 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00053-2
4.
4. S. Heun and P. M. Borsenberger, Chem. Phys. 200(1–2 ), 245 (1995).
http://dx.doi.org/10.1016/0301-0104(95)00192-Q
5.
5. Y. C. Zhu, L. Zhou, H. Y. Li, Q. L. Xu, M. Y. Teng, Y. X. Zheng, J. L. Zuo, H. J. Zhang, and X. Z. You, Adv. Mater. 23(35 ), 4041 (2011).
http://dx.doi.org/10.1002/adma.v23.35
6.
6. H. Scher and E. W. Montroll, Phys. Rev. B 12(6 ), 2455 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.2455
7.
7. E. Lebedev, Th. Dittrich, V. Petrova-Koch, S. Karg, and W. Brütting, Appl. Phys. Lett. 71, 2686 (1997).
http://dx.doi.org/10.1063/1.120179
8.
8. R. Dost, A. Das, and M. Grell, J. Appl. Phys. 104, 084519 (2008).
http://dx.doi.org/10.1063/1.3006443
9.
9. S. C. Tse, H. H. Fong, and S. K. So, J. Appl. Phys. 94(3 ), 2033 (2003).
http://dx.doi.org/10.1063/1.1589175
10.
10. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 60(10 ), 1220 (1992).
http://dx.doi.org/10.1063/1.107411
11.
11. S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69(15 ), 2160 (1996).
http://dx.doi.org/10.1063/1.117151
12.
12. S. C. Tse, S. W. Tsang, and S. K. So, J. Appl. Phys. 100(6 ), 2033 (2006).
13.
13. O. J. Weiß, R. K. Krause, and A. Hunze, J. Appl. Phys. 103, 043709 (2008).
http://dx.doi.org/10.1063/1.2841362
14.
14. C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283(5403 ), 822 (1999).
http://dx.doi.org/10.1126/science.283.5403.822
15.
15. P. V. Pesavento, R. J. Chesterfield, C. R. Newman, and C. D. Frisbie, J. Appl. Phys. 96(12 ), 7312 (2004).
http://dx.doi.org/10.1063/1.1806533
16.
16. C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, J. Appl. Phys. 96(4 ), 2080 (2004).
http://dx.doi.org/10.1063/1.1767292
17.
17. G. Juška, K. Arlauskas, M. Viliūnas, and J. Kočka, Phys. Rev. Lett. 84(21 ), 4946 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4946
18.
18. A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Osterbacka, G. Juška, L. Brassat, and H. Bassler, Phys. Rev. B 71, 035214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035214
19.
19. G. Juška, N. Nekraˇsas, V. Valentinavičius, P. Meredith, and A. Pivrikas, Phys. Rev. B 84, 155202 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155202
20.
20. P. Prins, F. C. Grozema, J. M. Schins, T. J. Savenije, S. Patil, U. Scherf, and L. D. A. Siebbeles, Phys. Rev. B 73(4 ), 045204 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045204
21.
21. R. J. O. M. Hoofman, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Nature (London) 392(6671 ), 54 (1998).
http://dx.doi.org/10.1038/32118
22.
22. A. M. van de Craats and J. M. Warman, Adv. Mater. 13(2 ), 130 (2001).
http://dx.doi.org/10.1002/(ISSN)1521-4095
23.
23. A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, Appl. Phys. Lett. 71(2 ), 228 (1997).
http://dx.doi.org/10.1063/1.119917
24.
24. Y. Kawabe and J. Abe, Appl. Phys. Lett. 81(3 ), 493 (2002).
http://dx.doi.org/10.1063/1.1494105
25.
25. B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, J. Appl. Phys. 89(8 ), 4575 (2001).
http://dx.doi.org/10.1063/1.1352027
26.
26. K. Book, H. Bassler, V. R. Nikitenko, and A. Elschner, Synth. Met. 111, 263 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00378-1
27.
27. W. Brutting, H. Riel, T. Beierlein, and W. Riess, J. Appl. Phys. 89(3 ), 1704 (2001).
http://dx.doi.org/10.1063/1.1332088
28.
28. S. Barth, P. Muller, H. Riel, P. F. Seidler, W. Riess, H. Vestweber, and H. Bassler, J. Appl. Phys. 89(7 ), 3711 (2001).
http://dx.doi.org/10.1063/1.1330766
29.
29. J. Lee, J. I. Lee, J. W. Lee, and H. Y. Chu, Org. Electron. 11(7 ), 1159 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.014
30.
30. J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. M. Shi, Appl. Phys. Lett. 93(12 ), 123306 (2008).
http://dx.doi.org/10.1063/1.2978235
31.
31. P. Strohriegl and J. V. Grazulevicius, Adv. Mater. 14(20 ), 1439 (2002).
http://dx.doi.org/10.1002/1521-4095(20021016)14:20<1439::AID-ADMA1439>3.0.CO;2-H
32.
32. M. Hiramoto, K. Koyama, K. Nakayama, and M. Yokoyama, Appl. Phys. Lett. 76(10 ), 1336 (2000).
http://dx.doi.org/10.1063/1.126026
33.
33. I. D. Parker, J. Appl. Phys. 75(3 ), 1656 (1994).
http://dx.doi.org/10.1063/1.356350
34.
34. L. Zhou, X. Li, X. Li, J. Feng, S. Song, and H. Zhang, J. Phys. Chem. C 114(49 ), 21723 (2010).
http://dx.doi.org/10.1021/jp106823p
35.
35. L. Zhou, J. Tang, Z. Guo, J. Feng, X. Li, X. Li, R. Deng, and H. Zhang, J. Lumin. 130(11 ), 2265 (2010).
http://dx.doi.org/10.1016/j.jlumin.2010.07.003
36.
36. W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, and J. H. Kwon, Appl. Phys. Lett. 93(6 ), 063303 (2008).
http://dx.doi.org/10.1063/1.2969040
37.
37. J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Phys. Rev. B 66(23 ), 235321 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235321
38.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3684971
Loading
/content/aip/journal/apl/100/7/10.1063/1.3684971
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/7/10.1063/1.3684971
2012-02-13
2014-07-29

Abstract

The electron mobility of Alq3 and iridium complexes was determined via transient electroluminescence(EL) method based on ITO (indium tin oxide)/di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane/complex/LiF/Al with short and rectangular driving voltage pulses. Apparent values of the electron mobility (μe ) in complexes have been investigated from their onset of EL upon different driving voltages. The result reveals that the μe , 4.31 × 10−6 cm2/V·s, of the efficient phosphorescent material Ir(tfmppy)2(tpip) [1, tfmppy = 4-trifluoromethylphenylpyridine, tpip = tetraphenylimido-diphosphinate] under electric field of 1300 (V/cm)1/2 is as high as that of Alq3, which indicates that the good device performances of 1 are partly due to its high electron mobility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/7/1.3684971.html;jsessionid=1pmn4jil2av8i.x-aip-live-03?itemId=/content/aip/journal/apl/100/7/10.1063/1.3684971&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron mobility determination of efficient phosphorescent iridium complexes with tetraphenylimidodiphosphinate ligand via transient electroluminescence method
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3684971
10.1063/1.3684971
SEARCH_EXPAND_ITEM