1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/7/10.1063/1.3685702
1.
1. B. Cho, S. Song, Y. Ji, T.-W. Kim, and T. Lee, Adv. Funct. Mater. 21, 2806 (2011).
http://dx.doi.org/10.1002/adfm.201100686
2.
2. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
3.
3. J. Shinar and R. Shinar, J. Phys. D: Appl. Phys. 41, 133001 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/133001
4.
4. G. Witte and C. Wöll, J. Mater. Res. 19, 1889 (2004).
http://dx.doi.org/10.1557/JMR.2004.0251
5.
5. Y. Fujii, H. Atarashi, M. Hino, T. Nagamura, and K. Tanaka, ACS Appl. Mater. Interfaces 1, 1856 (2009).
http://dx.doi.org/10.1021/am9004336
6.
6. A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C 113, 20050 (2009).
http://dx.doi.org/10.1021/jp9050897
7.
7. R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982).
http://dx.doi.org/10.1063/1.93601
8.
8. Y. Kawamura, K. Toyoda, and S. Namba, Appl. Phys. Lett. 40, 374 (1982).
http://dx.doi.org/10.1063/1.93108
9.
9. R. Srinivasan and B. Braren, Chem. Rev. 89, 1303 (1989).
http://dx.doi.org/10.1021/cr00096a003
10.
10. D. Bauerle, Laser Processing and Chemistry, 3rd ed. (Springer, Berlin, 2000).
11.
11. S. Lazare and V. Granier, Laser Chem. 10, 25 (1989).
http://dx.doi.org/10.1155/1989/18750
12.
12. T. Lippert and J. T. Dickinson, Chem. Rev. 103, 453 (2003).
http://dx.doi.org/10.1021/cr010460q
13.
13. T. Lippert, in Polymers and Light, edited by T. Lippert (Springer, Berlin, 2004), Vol. 168, p. 51.
14.
14. P. E. Dyer, in Photochemical Processing of Electronic Materials, edited by I. W. Boyd and R. B. Jackman (Academic, London, 1992), p. 360.
15.
15. N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, Chem. Rev. 103, 519 (2003).
http://dx.doi.org/10.1021/cr010426b
16.
16. T. Lippert, Plasma Processes Polym. 2, 525 (2005).
http://dx.doi.org/10.1002/(ISSN)1612-8869
17.
17. N. Bityurin, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 101, 216 (2005).
http://dx.doi.org/10.1039/b408910n
18.
18. D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, B. R. Ringeisen, D. M. Bubb, and P. K. Wu, Chem. Rev. 103, 553 (2003).
http://dx.doi.org/10.1021/cr010428w
19.
19. T. M. Patz, A. Doraiswamy, R. J. Narayan, N. Menegazzo, C. Kranz, B. Mizaikoff, Y. Zhong, R. Bellamkonda, J. D. Bumgardner, S. H. Elder et al., Mater. Sci. Eng., C 27, 514 (2007).
http://dx.doi.org/10.1016/j.msec.2006.05.039
20.
20. V. Califano, F. Bloisi, L. R. M. Vicari, P. Colombi, E. Bontempi, and L. E. Depero, Appl. Surf. Sci. 254, 7143 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.05.295
21.
21. A. Stanculescu, M. Socol, G. Socol, I. N. Mihailescu, M. Girtan, and F. Stanculescu, Appl. Phys. A 104, 921 (2011).
http://dx.doi.org/10.1007/s00339-011-6440-y
22.
22. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
23.
23. E. Leveugle and L. V. Zhigilei, J. Appl. Phys. 102, 074914 (2007).
http://dx.doi.org/10.1063/1.2783898
24.
24. M. Gonuguntla and A. Sharma, Langmuir 20, 3456 (2004).
http://dx.doi.org/10.1021/la0362268
25.
25. T. E. Itina, L. V. Zhigilei, and B. J. Garrison, Nucl. Instrum. Methods Phys. Res. B 180, 238 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00423-2
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3685702
Loading
/content/aip/journal/apl/100/7/10.1063/1.3685702
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/7/10.1063/1.3685702
2012-02-15
2014-10-25

Abstract

A poly-(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) bilayer structure has been realized by single step matrix-assisted pulsed laser evaporation (ss-MAPLE) technique using the same solvent for both the polymers under vacuum conditions. Our ss-MAPLE procedure allows the fabrication of polymericmultilayerdevice stacks, which are very difficult to realize with the conventional solvent assisted deposition methods. A proof of concept bilayer P3HT/PCBM solar cell based on ss-MAPLE deposition has been realized and characterized. This demonstration qualifies ss-MAPLE as a general and alternative technique for the implementation of polymeric materials in hetero-structure device technology.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/7/1.3685702.html;jsessionid=6v6712kfuevb8.x-aip-live-02?itemId=/content/aip/journal/apl/100/7/10.1063/1.3685702&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3685702
10.1063/1.3685702
SEARCH_EXPAND_ITEM