1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Experimental realization of superconducting quantum interference devices with topological insulator junctions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/7/10.1063/1.3686150
1.
1. B. A , Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
http://dx.doi.org/10.1126/science.1133734
2.
2. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
3.
3. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).
http://dx.doi.org/10.1038/nature06843
4.
4. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
5.
5. X. L. Qi, L. Rundong, J. Zang, and S. C. Zhang, Science 323, 1184 (2009).
http://dx.doi.org/10.1126/science.1167747
6.
6. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang et al., Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
7.
7. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong et al., Nature 460, 1101 (2008).
http://dx.doi.org/10.1038/nature08234
8.
8. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nature Mater. 9, 225 (2010).
http://dx.doi.org/10.1038/nmat2609
9.
9. T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang et al., Phys. Rev. Lett. 103, 266803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266803
10.
10. P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J. Wang, Y. Wang, B. F. Zhu, X. Chen et al., Phys. Rev. Lett. 105, 076801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.076801
11.
11. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 100, 096407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096407
12.
12. J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.120403
13.
13. Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.107002
14.
14. E. Majorana, Nuovo Cimento 14, 171 (1937).
http://dx.doi.org/10.1007/BF02961314
15.
15. D. Zhang, J. Wang, A. M. DaSilva, J. S. Lee, H. R. Gutierrez, M. H. W. Chan, J. Jain, and N. Samarth, Phys. Rev. B 84, 165120 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165120
16.
16. B. Sacépé, J. B. Oostinga, J. L. Li, A. Ubaldini, N. J. G. Couto, E. Giannini, and A. F. Morpurgo, Nat. Commun. 2, 575 (2011).
http://dx.doi.org/10.1038/ncomms1586
17.
17. M. Veldhorst, M. Snelder, M. Hoek, T. Gang, X. L. Wang, V. K. Guduru, U. Zeitler, W. G. v. d. Wiel, A. A. Golubov, H. Hilgenkamp et al., e-print arXiv:cond-mat/1112.3527.
18.
18. C. W. J. Beenakker, e-print arXiv:cond-matt/1112.1950.
19.
19. A. H. Li, M. Shahbazi, S. H. Zhou, G. X. Wang, C. Zhang, P. Jood, G. Peleckis, Y. Du, Z. X. Cheng, X. L. Wang et al., Thin Solid Films 518, 57 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.03.124
20.
20. M. B. Ketchen, W. J. Gallagher, A. W. Kleinsasser, S. Murphy, and J. R. Clem, SQUID 85-Superconducting Quantum Interference Devices and Their Applications (de Gruyter, Berlin, 1985), p. 865.
21.
21. S. Jia, H. Ji, E. Climent-Pascual, M. K. Fuccillo, M. E. Charles, J. Xiong, N. P. Ong, and R. J. Cava, Phys. Rev. B 84, 235206 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235206
22.
22. C. D. Tesche and J. Clarke, Low Temp. Phys. 29, 301 (1977).
http://dx.doi.org/10.1007/BF00655097
23.
23. L. Fu and C. L. Kane, Phys. Rev. B 79, 161408R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.161408
24.
24. D. M. Badiane, M. Houzet, and J. S. Meyer, Phys. Rev. Lett. 107, 177002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.177002
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3686150
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Scanning electron microscopy image of dc SQUIDs with topological insulator nano junctions. Two SQUIDs with junctions having a separation length l = 120 nm are designed on an exfoliated Bi2Te3 (200 nm height) flake. The two Nb arms are differently sized resulting in an asymmetric SQUID. Nb is sputter deposited and defined by e-beam lithography. Inset shows a Josephson junction.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Atomic force microscopy image of an exfoliated Bi2Te3 surface. The step edges are 1.0 nm high, corresponding to the Bi2Te3 quintuple unit cell. These nanometer flat surfaces span an area up to 50 × 50 μm2.

Image of FIG. 3.

Click to view

FIG. 3.

IV-curve of the topological dc SQUID with a typical critical current of 30 μA. The junctions are 2 μm wide and have an electrode separation of 120 nm. The intrinsic bulk shunt has reduced the product to 10 μV. Inset shows the IV-curve under magnetic field modulation.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Voltage modulation the dc SQUID. (a) The critical current of the SQUID can be fitted (thin red line) by a model that accounts for the asymmetry of the design with fitting parameters, , the critical current ration  = 1.3, and inductance ratio  = 0.2. (b) The critical current of the individual junctions is suppressed at 350 μT (Fraunhofer pattern). SQUID oscillations are still observable. Inset shows the SQUID oscillations at small fields (left) and large fields (right) (c) The V- relationship reveals an asymmetric response as well as a shift for increasing bias currents. The solid lines represent equicurrents for ±30-70 μA.

Loading

Article metrics loading...

/content/aip/journal/apl/100/7/10.1063/1.3686150
2012-02-16
2014-04-17

Abstract

We demonstrate topological insulator (Bi2Te3) dc SQUIDs, based on superconductingNb leads coupled to nano-fabricated Nb-Bi2Te3-Nb Josephson junctions. The high reproducibility and controllability of the fabrication process allow the creation of dc SQUIDs with parameters that are in agreement with design values. Clear critical current modulation of both the junctions and the SQUID with applied magnetic fields have been observed. We show that the SQUIDs have a periodicity in the voltage-flux characteristic of of relevance to the ongoing pursuit of realizing interferometers for the detection of Majorana fermions in superconductor—topological insulator structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/7/1.3686150.html;jsessionid=ex80z8zhzctw.x-aip-live-06?itemId=/content/aip/journal/apl/100/7/10.1063/1.3686150&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental realization of superconducting quantum interference devices with topological insulator junctions
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/7/10.1063/1.3686150
10.1063/1.3686150
SEARCH_EXPAND_ITEM