1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhanced electrical stability of organic thin-film transistors with polymer semiconductor-insulator blended active layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/8/10.1063/1.3688177
1.
1. H. Sirringhaus, Proc. IEEE 97(9 ), 1570 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2021680
2.
2. A. C. Arias, J. D. Mackenzie, I. McCulloch, J. Rivnay, and A. Salleo, Chem. Rev. 110, 3 (2010).
http://dx.doi.org/10.1021/cr900150b
3.
3. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 328 (2006).
http://dx.doi.org/10.1038/nmat1612
4.
4. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
http://dx.doi.org/10.1038/nature07727
5.
5. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
6.
6. A. Salleo and M. L. Chabinyc, in Organic Electronics Materials: Manufacturing and Applications, edited by H. Klauk (Wiley-VCH, Weinheim, 2006), pp. 108129.
7.
7. S. G. J. Mathijssen, M.-J. Spijkman, A. M. Andringa, P. A. van Hal, I. McMulloch, M. Kemerink, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. 22, 5105 (2010).
http://dx.doi.org/10.1002/adma.201001865
8.
8. A. Sharma, S. G. Mathijssen, P. A. Bobbert, and D. M. de Leeuw, Appl. Phys. Lett. 99, 103302 (2011).
http://dx.doi.org/10.1063/1.3634066
9.
9. J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. C. Bradley, and T. D. Anthopoulos, J. Mater. Chem. 20, 2562 (2010).
http://dx.doi.org/10.1039/b921674j
10.
10. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. Van Veenendaal, B.–H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678 (2003).
http://dx.doi.org/10.1038/nmat978
11.
11. A. Babel, J. D. Wind, and S. A. Jenekhe, Adv. Funct. Mater. 14, 891 (2004).
http://dx.doi.org/10.1002/(ISSN)1616-3028
12.
12. A. Babel and S. A. Jenekhe, Macromolecules 37, 9835 (2004).
http://dx.doi.org/10.1021/ma0482314
13.
13. L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang, and K. Cho, Adv. Mater. 20, 1141 (2008).
http://dx.doi.org/10.1002/adma.200702505
14.
14. A. C. Arias, F. Endicott, and R. A. Street, Adv. Mater. 18, 2900 (2006).
http://dx.doi.org/10.1002/(ISSN)1521-4095
15.
15. J. Smith, R. Hamilton, Y. Qi, A. Kahn, D. D. C. Bradley, M. Heeney, I. McCulloch, and T. D. Anthopoulos, Adv. Funct. Mater. 20, 2330 (2010).
http://dx.doi.org/10.1002/adfm.201000427
16.
16. Z. He, K. Xiao, W. Durant, D. K. Hensley, J. E. Anthony, K. Hong, S. M. Kilbey II, J. Chen, and D. Li, Adv. Func. Mater. 21, 3617 (2011).
http://dx.doi.org/10.1002/adfm.201002656
17.
17. D. H. Kim, B. L. Lee, H. Moon, H. M. Kang, E. J. Jeong, J. I. Park, K. M. Han, S. Lee, B. W. Yoo, B. Koo, J. Y. Kim, W. H. Lee, K. Cho, H. A. Becerril, and Z. Bao, J. Am. Chem. Soc. 131, 6124 (2009).
http://dx.doi.org/10.1021/ja8095569
18.
18. L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
19.
19. J. Lee, D. H. Kim, B.-L. Lee, J.-I. Park, B. Yoo, H. Moon, B. Koo, Y.-W. Jin, and S. Lee, J. Appl. Phys. 110, 084511 (2011).
http://dx.doi.org/10.1063/1.3656442
20.
20. F. R. Libsch and J. Kanicki, Appl. Phys. Lett. 62, 1286 (1993).
http://dx.doi.org/10.1063/1.108709
21.
21. U. Zschieschang, R. T. Weitz, K. Kern, and H. Klauk, Appl. Phys. A: Mater. Sci. Process. 95(1 ), 139 (2009).
http://dx.doi.org/10.1007/s00339-008-5019-8
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/8/10.1063/1.3688177
Loading
/content/aip/journal/apl/100/8/10.1063/1.3688177
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/8/10.1063/1.3688177
2012-02-22
2014-09-17

Abstract

We report on an enhanced electrical stability of organic thin-film transistors (OTFTs), where an organic semiconductor (poly(didodecylquaterthiophene-alt-didodecylbithiazole) (PQTBTz-C12)) and a polymerinsulator (poly(methyl methacrylate) (PMMA)) blended film were used as the active layer, in comparison with a single PQTBTz-C12 OTFT. While both devices exhibit similar electrical performance in terms of mobility and ON/OFF ratios, the blended device is less susceptible to OFF-bias stress. It is suggested that the carboxyl groups of PMMA in the blend may act as suppressors with regards to hole accumulation in the channel, and thus, the PQTBTz-C12/PMMA blend based OTFTs exhibit delayed threshold voltage shifts under OFF-bias stress.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/8/1.3688177.html;jsessionid=59uf1bsole9df.x-aip-live-06?itemId=/content/aip/journal/apl/100/8/10.1063/1.3688177&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced electrical stability of organic thin-film transistors with polymer semiconductor-insulator blended active layers
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/8/10.1063/1.3688177
10.1063/1.3688177
SEARCH_EXPAND_ITEM