1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/9/10.1063/1.3687190
1.
1. A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
2.
2. E. Kim and A. H. Castro Neto, Europhys. Lett. 84, 57007 (2008).
http://dx.doi.org/10.1209/0295-5075/84/57007
3.
3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
4.
4. A. H. Castro Neto, Mater. Today 13, 12 (2010).
http://dx.doi.org/10.1016/S1369-7021(10)70029-8
5.
5. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc et al.., Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
6.
6. P. Sutter, M. S. Hybertsen, J. T. Sadowski, and E. Sutter, Nano Lett. 9, 2654 (2009).
http://dx.doi.org/10.1021/nl901040v
7.
7. Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H.-J. Gao, Adv. Mater. 21, 2777 (2009).
http://dx.doi.org/10.1002/adma.200800761
8.
8. J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008).
http://dx.doi.org/10.1021/nl0728874
9.
9. Y. Pan, D. X. Shi, and H.-J. Gao, Chin. Phys. 16, 3151 (2007).
http://dx.doi.org/10.1088/1009-1963/16/11/001
10.
10. L. Huang, Y. Pan, L. D. Pan, M. Gao, W. Y. Xu, Y. D. Que, H. T. Zhou, Y. L. Wang, S. X. Du, and H.-J. Gao, Appl. Phys. Lett. 99, 163107 (2011).
http://dx.doi.org/10.1063/1.3653241
11.
11. C. Enderlein, Y. S. Kim, A. Bostwick, E. Rotenberg, and K. Horn, New J. Phys. 12, 033014 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/033014
12.
12. I. Gierz, T. Suzuki, R. T. Weitz, D. S. Lee, B. Krauss, C. Riedl, U. Starke, H. Höchst, J. H. Smet, C. R. Ast et al., Phys. Rev. B 81, 235408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235408
13.
13. A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K.-H. Rieder, Phys. Rev. B 62, 13202 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13202
14.
14. G. Csányi, P. B. Littlewood, A. H. Nevidomskyy, C. J. Pickard, and B. D. Simons, Nat. Phys. 1, 42 (2005).
http://dx.doi.org/10.1038/nphys119
15.
15. N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, Phys. Rev. Lett. 14, 225 (1965).
http://dx.doi.org/10.1103/PhysRevLett.14.225
16.
16. A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.157601
17.
17. S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).
http://dx.doi.org/10.1038/nmat2003
18.
18. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2006).
http://dx.doi.org/10.1038/nphys477
19.
19. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Science 317, 219 (2007).
http://dx.doi.org/10.1126/science.1142882
20.
20. P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger, and J.-Y. Veuillen, Phys. Rev. B 76, 041403R (2007).
http://dx.doi.org/10.1103/PhysRevB.76.041403
21.
21. N. M. R. Peres, F. D. Klironomos, S.-W. Tsai, J. R. Santos, J. M. B. Lopes dos Santos, and A. H. Castro Neto, Europhys. Lett. 80, 67007 (2007).
http://dx.doi.org/10.1209/0295-5075/80/67007
22.
22. Y. B. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl, and M. F. Crommie, Nat. Phys. 4, 627 (2008).
http://dx.doi.org/10.1038/nphys1022
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/9/10.1063/1.3687190
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color) SIA on Ru(0001). (a)-(c) Schematics of the silicon intercalation process: (a) graphene formation on Ru(0001); (b) Si deposition on Graphene/Ru(0001); (c) annealing and Si layer intercalation. (d) STM image of graphene on Ru(0001), showing the ordered moiré pattern, 40 nm × 40 nm, 0.1 nA, −3.0 V. (e) Silicon deposition on the graphene, 20 nm × 20 nm, 0.2 nA, −2.0 V. (f) After annealing, the Si intercalation between graphene and Ru(0001), 25 nm × 25 nm, 0.1 nA, −3.0 V. (g) Zoom-in STM image of G/Si/Ru, 6 nm × 6 nm, 0.1 nA, −1.0 V. (h) and (i) 3D STM images of the G/Si/Ru surface, 3 nm × 3 nm, 0.2 nA, −1.0 V.

Image of FIG. 2.

Click to view

FIG. 2.

ARPES on G/Si/Ru. (a) Electronic structure of the silicon intercalated graphene along the Γ-Κ direction. (b)-(d) Constant energy maps at the EF, ED, and EF −0.8 eV.

Image of FIG. 3.

Click to view

FIG. 3.

(Color) Silicon intercalated graphene. (a) STM image of the point defect on G/Si/Ru, 10 nm × 10 nm, 0.3 nA, −0.8 V. (b) FFT of the G/Si/Ru STM image at low voltage, 2 mV, 0.3 nA. The zoom-in FFT images show details of the inter-valley scattering spot. Each spot due to the inter-valley scattering is separated into two parts along the Γ-Κ direction. (c) and (d) dI/dV at different bias scales. I = 0.3 nA, V = 1.5 V for (c) and I = 0.3nA, V = 0.4 V for (d).

Image of FIG. 4.

Click to view

FIG. 4.

(Color) STM images of G/n-Si/Ru. (a) In G/1-Si/Ru region, the moiré pattern can be observed, 12 nm × 7 nm, 0.1 nA, −3.0 V. (b), (c) High resolution STM images at the G/2-Si/Ru region, showing clearly each carbon atom in the graphene lattice, 4.5 nm × 4.5 nm, 0.3 nA, −1.0 V.

Loading

Article metrics loading...

/content/aip/journal/apl/100/9/10.1063/1.3687190
2012-02-27
2014-04-23

Abstract

We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/9/1.3687190.html;jsessionid=95c2uf0h9qa7s.x-aip-live-02?itemId=/content/aip/journal/apl/100/9/10.1063/1.3687190&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001)
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/9/10.1063/1.3687190
10.1063/1.3687190
SEARCH_EXPAND_ITEM