1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Ultra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/100/9/10.1063/1.3691181
1.
1. H. Shirakawa, E. J. Louis, A. G. Mac Diarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc., Chem. Commun. 578 (1977).
http://dx.doi.org/10.1039/c39770000578
2.
2. H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18, 699 (1983).
http://dx.doi.org/10.1016/0379-6779(87)90964-7
3.
3. D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. In Han, and K. Cho, Adv. Mater. 19, 678 (2007).
http://dx.doi.org/10.1002/adma.200601259
4.
4. U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Adv. Mater. 22, 982 (2010).
http://dx.doi.org/10.1002/adma.200902740
5.
5. H. C. Yan, Z. Chen, Y. Zheng, C. E. Newman, J. Quin, F. Dolz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).
http://dx.doi.org/10.1038/nature07727
6.
6. R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel et al., Proceedings of the IEEE 93, 1239 (2005).
http://dx.doi.org/10.1109/JPROC.2005.851237
7.
7. G. H. Gelinck, H. Edzer, A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers et al., Nature Mater. 3, 106 (2004).
http://dx.doi.org/10.1038/nmat1061
8.
8. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).
http://dx.doi.org/10.1073/pnas.0502392102
9.
9. M. Barbaro, A. Caboni, P. Cosseddu, G. Mattana, and A. Bonfiglio, IEEE Trans. Inf. Technol. Biomed. 14, 758 (2010).
http://dx.doi.org/10.1109/TITB.2010.2044798
10.
10. J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000).
http://dx.doi.org/10.1063/1.126219
11.
11. M. Halik, H. Klauk, U. Zschieschang, G. Schmidt, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
12.
12. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).
http://dx.doi.org/10.1038/nature05533
13.
13. A. Ulman, Chem. Rev. 96, 1533 (1996).
http://dx.doi.org/10.1021/cr9502357
14.
14. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105, 1103 (2005).
http://dx.doi.org/10.1021/cr0300789
15.
15. F.-C. Chen, C.-S. Chuang, Y.-S. Lin, L.-J. Kung, T.-H. Chen, and H.-P. D. Shieh, Org. Electron. 7, 435 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.06.009
16.
16. W. C. Shin, H. Moon, S. Yoo, Y. Li, and B. J. Cho, IEEE Electron Device Lett. 31, 1308 (2010).
17.
17. Y.-G. Ha, J. D. Emery, M. J. Bedzyk, H. Usta, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 133, 10239 (2011).
http://dx.doi.org/10.1021/ja202755x
18.
18. M.-H. Yoon, H. Yan, A. Facchetti, and T. Marks, J. Am. Chem. Soc. 127, 10388 (2005).
http://dx.doi.org/10.1021/ja052488f
19.
19. X. Cheng, M. Caironi, Y.-Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, Chem. Mater. 22, 1559 (2010).
http://dx.doi.org/10.1021/cm902929b
20.
20. C. E. Murphy, L. Yang, S. Ray, L. Yu, S. Knox, and N. Stingelin, J. Appl. Phys. 110, 093523 (2011).
http://dx.doi.org/10.1063/1.3660779
21.
21. J. H. Cho, J. Lee, Y. Xia, B. S. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater. 7, 900 (2008).
http://dx.doi.org/10.1038/nmat2291
22.
22. L. Herlogsson, M. Cölle, S. Tierney, X. Crispin, and M. Berggren, Adv. Mater. 22, 72 (2010).
http://dx.doi.org/10.1002/adma.200901850
23.
23. M. J. Panzer and C. D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007).
http://dx.doi.org/10.1021/ja0708767
24.
24. L. L. Chua, J. Zaumseil, J. F. Chang, E. Ou, H. Sirringhaus, and R. H. Friend, Nature 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
25.
25. M. Kaltenbrunner, P. Stadler, R. Schwödiauer, A. W. Hassel, N. S. Sariciftci, and S. Bauer, Adv. Mater. 23, 4892 (2011).
http://dx.doi.org/10.1002/adma.201103189
26.
26. X.-D. Dang, W. Plieth, S. Richter, M. Plötner, and W.-J. Fischer, Phys. Status Solidi A 205, 626 (2008).
http://dx.doi.org/10.1002/pssa.v205:3
27.
27. A. Khabari and F. K. Urban III, J. Non-Cryst. Solids 351, 3536 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.08.027
28.
28. K. Crain, Surf. Mount Technol. 9, 50 (1995).
29.
29.See supplementary material at http://dx.doi.org/10.1063/1.3691181 for the electrical characterization of bare Al2O3 devices, a comparison of the main electrical parameter in the two different configurations, and a morphological investigation of the employed PET substrate. [Supplementary Material]
30.
30. F. D. Fleischli, S. Suarez, M. Schaer, and L. Zuppiroli, Langmuir 26, 15044 (2010).
http://dx.doi.org/10.1021/la102060u
31.
31. A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui, M. Maillard, B. Berge, J.-C. Robert, and J. Legrand, Appl. Phys. Lett. 94, 152901 (2009).
http://dx.doi.org/10.1063/1.3114404
32.
32. D. Wright, B. Rajalingam, S. Selvarasah, M. R. Dokmecid, and A. Khademhosseini, Lab Chip 7, 1272 (2007).
http://dx.doi.org/10.1039/b706081e
33.
33. A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).
http://dx.doi.org/10.1149/1.2221149
34.
34. T. Sekitani, U. Zschieschang, H. klauk, and T. Someya, Nature Mater. 9, 1015 (2010).
http://dx.doi.org/10.1038/nmat2896
35.
35. N. B. Ukah, J. Granstrom, R. R. S. Gari, G. M. King, and S. Guha, Appl. Phys. Lett. 99, 243302 (2011).
http://dx.doi.org/10.1063/1.3669696
36.
36. U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, Adv. Mater. 23, 654 (2011).
http://dx.doi.org/10.1002/adma.201003374
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/9/10.1063/1.3691181
Loading
/content/aip/journal/apl/100/9/10.1063/1.3691181
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/100/9/10.1063/1.3691181
2012-03-01
2015-06-30

Abstract

Organic thin film transistors have been fabricated on plastic substrates using a combination of two ultrathin insulating films, namely a 6 nm Al2O3film (grown by UV-Ozone treatment of a pre-deposited aluminium film) and a 25 nm parylene C film deposited by vapour phase, as gate dielectric. They show a very low leakage current density, around 2 × 10−9 A/cm2, and, most importantly, can be operated at voltages below 1 V. We demonstrate that this low-cost technique is highly reproducible and represents a step forward for the routine fabrication of ultra-low voltage plastic electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/100/9/1.3691181.html;jsessionid=5yp60itycix9.x-aip-live-02?itemId=/content/aip/journal/apl/100/9/10.1063/1.3691181&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process
http://aip.metastore.ingenta.com/content/aip/journal/apl/100/9/10.1063/1.3691181
10.1063/1.3691181
SEARCH_EXPAND_ITEM