1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Biological cell positioning and spatially selective destruction via magnetic nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/1/10.1063/1.4730945
1.
1. L. Josephson, BioMEMS and Biomedical Nanotechnology 1, 227 (2006).
http://dx.doi.org/10.1007/978-0-387-25842-3_8
2.
2. S. Morisada, N. Miyata, and K. Iwahori, J. Microbiol. Methods 51, 141 (2002).
http://dx.doi.org/10.1016/S0167-7012(02)00046-5
3.
3. R. E. Zigeuner, R. Riesenberg, H. Pohla, A. Hofstetter, R. Oberneder, J. Urol. 169, 701 (2003).
http://dx.doi.org/10.1016/S0022-5347(05)63996-1
4.
4. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006).
http://dx.doi.org/10.1088/0953-8984/18/38/S26
5.
5. R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor, Ann. Surg. 146, 596 (1957).
http://dx.doi.org/10.1097/00000658-195710000-00007
6.
6. R. W. Rand, H. D. Snow, D. G. Elliott, and M. Snyder, Appl. Biochem. Biotechnol. 6, 265 (1981).
http://dx.doi.org/10.1007/BF02798277
7.
7. S. Suzuki, K. Arai, T. Koike, and K. Oguchi, J. Jpn. Soc. Cancer Ther. 25, 2649 (1990).
8.
8. M. Mitsumori, Int. J. Hyperthermia 10, 785 (1994).
http://dx.doi.org/10.3109/02656739409012371
9.
9. P. Moroz, S. K. Jones, and B. N. Gray, Int. J. Hyperthermia 18, 267 (2002).
http://dx.doi.org/10.1080/02656730110108785
10.
10. D. Nagesha, H. Devalapally, S. Sridhar, and M. M. Amiji, Fundam. Biomed. Technol. 4, 381 (2008).
http://dx.doi.org/10.1007/978-0-387-76554-9_13
11.
11. M.-F. Lai, C.-Y. Chen, C.-P. Lee, H.-T. Huang, T.-R. Ger, and Z.-H. Wei, Appl. Phys. Lett. 96, 183701 (2010).
http://dx.doi.org/10.1063/1.3383229
12.
12. C. S. Lee, H. Lee, and R. M. Westervelt, Appl. Phys. Lett. 79, 3308 (2001).
http://dx.doi.org/10.1063/1.1419049
13.
13. J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).
http://dx.doi.org/10.1016/S0304-8853(02)00898-3
14.
14. H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, Nano Lett. 5, 995 (2004).
http://dx.doi.org/10.1021/nl049562x
15.
15. H. Lee, A. M. Purdon, and R. M. Westervelt, IEEE Trans. Magn. 40, 2991 (2004).
http://dx.doi.org/10.1109/TMAG.2004.829179
16.
16. H. Lee, A. M. Purdon, and R. M. Westervelt, Appl. Phys. Lett. 85, 1063 (2004).
http://dx.doi.org/10.1063/1.1776339
17.
17. M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Westervelt, Appl. Phys. Lett. 72, 2906 (1998).
http://dx.doi.org/10.1063/1.121455
18.
18. J. E. Lovelock, Biochim. Et Biophys. Acta 10, 414 (1953).
http://dx.doi.org/10.1016/0006-3002(53)90273-X
19.
19. E. Ponder, J. Exp. Biol. 27, 198 (1950).
20.
20. J. R. Lloyd, T. J. Mueller, and R. E. Waugh, J. Biomech. Eng. 100, 223 (1978).
http://dx.doi.org/10.1115/1.3426214
21.
21. J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Sureshvol, Mol. Biol. Cell 1, 169 (2004).
22.
22. V. Zablotskii, O. Lunov, A. Dejneka, L. Jastrabık, T. Polyakova, T. Syrovets, and Th. Simmet, Appl. Phys. Lett. 99, 183701 (2011).
http://dx.doi.org/10.1063/1.3656020
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/1/10.1063/1.4730945
Loading
/content/aip/journal/apl/101/1/10.1063/1.4730945
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/1/10.1063/1.4730945
2012-07-02
2014-09-30

Abstract

We report a procedure on biological cells (erythrocytes) where magnetite (Fe3O4) nanoparticles have been used for micro-scale blood cell positioning and space selective destruction. The experiment was accomplished on the top of the microelectromagnet serving as a source of magnetic field and as a local heater at the same time. We observed the controlled motion and focusing of the blood cells dragged by the flow of magnetic nanoparticles. Furthermore, we found that the increase of the electric current through the microelectromagnet leads to the local cell haemolysis. The haemolysis is observed only in the vicinity (5-10 microns) of the current-carrying wires. The whole procedure takes less than 3 seconds. The obtained results provide a rich resource showing the dynamics of cell dragging by the magnetic nanoparticles and demonstrate the feasibility of using magnetic nanoparticles for cell positioning and surgery on the cellular level with micrometer-scale precision.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/1/1.4730945.html;jsessionid=4qjp0jpf7spl.x-aip-live-02?itemId=/content/aip/journal/apl/101/1/10.1063/1.4730945&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Biological cell positioning and spatially selective destruction via magnetic nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/1/10.1063/1.4730945
10.1063/1.4730945
SEARCH_EXPAND_ITEM