1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electrical stabilities and carrier transport mechanisms of flexible organic bistable devices based on CdSe-InP core-shell nanoparticle/polystyrene nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4748873
1.
1. R. C. Evans, A. G. Macedo, S. Pradhan, U. Scherf, L. D. Carlos, and H. D. Burrows, Adv. Mater. 22, 3032 (2010).
http://dx.doi.org/10.1002/adma.200904377
2.
2. S. Shao, J. Liu, B. Zhang, Z. Xie, and L. Wand, Appl. Phys. Lett. 98, 203304 (2011).
http://dx.doi.org/10.1063/1.3593020
3.
3. L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, Nanotechnology 22, 285307 (2011).
http://dx.doi.org/10.1088/0957-4484/22/28/285307
4.
4. B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andrä, and F. Falk, Nanotechnology 22, 315401 (2011).
http://dx.doi.org/10.1088/0957-4484/22/31/315401
5.
5. H. J. Lee, B. R. Lee, J. S. Park, S. O. Kim, J. Y. Kim, and M. H. Song, Appl. Phys. Lett. 98, 253309 (2011).
http://dx.doi.org/10.1063/1.3602923
6.
6. D. I. Son, D. H. Park, J. B. Kim, J. W. Choi, T. W. Kim, B. Angadi, Y. Yi, and W. K. Choi, J. Phys. Chem. C 115, 2341 (2011).
http://dx.doi.org/10.1021/jp110030x
7.
7. S. H. Lee, H. J. Kim, D. J. Yun, S. W. Rhee, and K. J. Yong, Appl. Phys. Lett. 95, 262113 (2009).
http://dx.doi.org/10.1063/1.3280864
8.
8. D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. I. Park, and W. K. Choi, Nano Lett. 10, 2441 (2010).
http://dx.doi.org/10.1021/nl1006036
9.
9. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Nano Lett. 10, 4381 (2010).
http://dx.doi.org/10.1021/nl101902k
10.
10. C. H. Cheng, F. S. Yeh, and A. Chin, Adv. Mater. 23, 902 (2011).
http://dx.doi.org/10.1002/adma.201002946
11.
11. H. Liu, D. A. Ferrer, F. Ferdousi, and S. K. Banerjee, Appl. Phys. Lett. 95, 203112 (2009).
http://dx.doi.org/10.1063/1.3258471
12.
12. H. Zhou, J. A. Dorman, Y. C. Perng, S. Gachot, J. G. Zheng, J. P. Chang, and J. Liu, Appl. Phys. Lett. 98, 192107 (2011).
http://dx.doi.org/10.1063/1.3589993
13.
13. D. Y. Yun, J. M. Son, T. W. Kim, S. W. Kim, and S. W. Kim, Appl. Phys. Lett. 98, 243306 (2011).
http://dx.doi.org/10.1063/1.3596705
14.
14. S. H. Song, B. J. Cho, T. W. Kim, Y. S. Ji, M. S. Jo, G. N. Wang, M. H. Choe, Y. H. Kahng, H. S. Hwang, and T. H. Lee, Adv. Mater. 22, 5048 (2010).
http://dx.doi.org/10.1002/adma.201002575
15.
15. J. H. Ham, D. H. Oh, S. H. Cho, J. H. Jung, T. W. Kim, E. D. Ryu, and S. W. Kim, Appl. Phys. Lett. 94, 112101 (2009).
http://dx.doi.org/10.1063/1.3097805
16.
16. S. H. Kim, J. H. Park, S. W. Kim, W. Jung, J. Y. Sung, and S. W. Kim, J. Colloid Interface Sci. 346, 347 (2010).
http://dx.doi.org/10.1016/j.jcis.2010.03.030
17.
17. T. Nagate, S. J. Oh, T. Chikyow, and Y. Wakayama, Org. Electron. 12, 279 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.11.009
18.
18. D. Y. Yun, J. K. Kwak, J. H. Jung, T. W. Kim, and D. I. Son, Appl. Phys. Lett. 95, 143301 (2009).
http://dx.doi.org/10.1063/1.3243463
19.
19. Y. S. Ji, B. J. Cho, S. H. Song, T. W. Kim, M. H. Choe, Y. H. Kahng, and T. H. Lee, Adv. Mater. 22, 3071 (2010).
http://dx.doi.org/10.1002/adma.200904441
20.
20. J. J. Jeong, S. H. Woo, Y. K. Kim, S. J. Jeong, Y. S. Han, D. K. Lee, J. I. Ko, S. K. Jung, and B. C. An, Mol. Cryst. Liq. Cryst. 551, 212 (2011).
http://dx.doi.org/10.1080/15421406.2011.600655
21.
21. K. Chiba and A. Futagami, Appl. Phys. Lett. 93, 013114 (2008).
http://dx.doi.org/10.1063/1.2951596
22.
22. D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, Nanotechnology 20, 195203 (2009).
http://dx.doi.org/10.1088/0957-4484/20/19/195203
23.
23. H. T. Lin, Z. Pei, and Y. J. Chan, IEEE Electron Device Lett. 28, 569 (2007).
http://dx.doi.org/10.1109/LED.2007.899668
24.
24. Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, Prog. Polym. Sci. 33, 917 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.08.001
25.
25. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4748873
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Current-voltage curves for the Al/CdSe-InP nanoparticles embedded in PS layer/ITO/PET devices before and after bending. The insets present photographs of OBDs (a) before bending and after bending with curvature diameters of (b) 20 and (c) 10 mm.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Operation of a write (+3 V)/read (+0.7 V)/erase (−3 V)/read (+0.7 V) sequence for the Al/CdSe-InP nanoparticles embedded in PS layer/ITO/PET devices (b) before bending and after bending with surface curvature diameters of (c) 20 and (d) 10 mm.

Image of FIG. 3.

Click to view

FIG. 3.

Retention data for Al/CdSe-InP nanoparticles embedded in PS layer/ITO/PET devices (a) before bending and after bending with surface curvature diameters of (b) 20 and (c) 10 mm at a stress voltage of 0.7 V. The solid squares represent the ON state, and the empty squares represent the OFF state.

Image of FIG. 4.

Click to view

FIG. 4.

Log-log plot of current as a function of the voltage for the Al/CdSe-InP nanoparticles embedded in PS layer/ITO/PET devices in (a) OFF and (b) ON states. The insets of (a) and (b) at lower voltages follow ln(I) vs V1/2, and the curve is fitted for the thermionic emission conduction mechanism.

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4748873
2012-09-05
2014-04-24

Abstract

Flexible organic bistable devices (OBDs) for the memory characteristics utilizing CdSe-InP core-shell nanoparticle/polystyrene nanocomposites were fabricated on indium-tin-oxide-coated polyethylene terephthalate substrates. Current-voltage measurements on Al/CdSe-InP nanoparticles embedded in polystyrene layer/indium-tin-oxide/polyethylene terephthalate devices without and with bending exhibit wide-range current hysteresis behaviours with ON/OFF ratios of 1 × 107 and 1 × 105, respectively. The endurance number of the ON/OFF switchings without bending was 1 × 105 cycles. The switching characteristics of the OBDs after bending were stable enough to distinguish the ON and OFF. The carrier transport mechanisms of the OBDs are described on the basis of the current-voltage results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4748873.html;jsessionid=apfjq96ee8b6n.x-aip-live-01?itemId=/content/aip/journal/apl/101/10/10.1063/1.4748873&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical stabilities and carrier transport mechanisms of flexible organic bistable devices based on CdSe-InP core-shell nanoparticle/polystyrene nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4748873
10.1063/1.4748873
SEARCH_EXPAND_ITEM