1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Correlation between density of paramagnetic centers and photovoltaic degradation in polythiophene-fullerene bulk heterojunction solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4749813
1.
1. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Nat. Photonics 3(11), 649653 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
2.
2. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 18(5), 346352 (2010).
http://dx.doi.org/10.1002/pip.1021
3.
3. J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Sol. Energy Mater. Sol. Cells 92(7), 727731 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.004
4.
4. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater Sol. Cells 92(7), 686714 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
5.
5. M. D. Pace, T. C. Christidis, J. J. Yin, and J. Milliken, J. Phys. Chem. 96(17), 68556858 (1992).
http://dx.doi.org/10.1021/j100196a001
6.
6. A. Sperlich, H. Kraus, C. Deibel, H. Blok, J. Schmidt, and V. Dyakonov, J Phys. Chem. B 115(46), 1351313518 (2011).
http://dx.doi.org/10.1021/jp2077215
7.
7. K. Norrman, S. A. Gevorgyan, and F. C. Krebs, ACS Appl. Mater. Interfaces 1(1), 102112 (2009).
http://dx.doi.org/10.1021/am800039w
8.
8. M. S. A. Abdou, F. P. Orfino, Y. Son, and S. Holdcroft, J. Am. Chem. Soc. 119(19), 45184524 (1997).
http://dx.doi.org/10.1021/ja964229j
9.
9. A. Seemann, H. J. Egelhaaf, C. J. Brabec, and J. A. Hauch, Org. Electron. 10(8), 14241428 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.08.001
10.
10. J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, and V. Dyakonov, Org. Electron. 11(10), 16931700 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.07.016
11.
11. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 2005).
12.
12. M. Mayer, AIP Conf. Proc. 475(1), 541544 (1999).
http://dx.doi.org/10.1063/1.59188
13.
13. K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc. 132(47), 1688316892 (2010).
http://dx.doi.org/10.1021/ja106299g
14.
14. A. Konkin, H. K. Roth, P. Scharff, A. Aganov, O. Ambacher, and S. Sensfuss, Solid State Commun. 149(21–22), 893897 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.01.034
15.
15. S. Hoshino, J. Appl. Phys. 95(9), 5088 (2004).
http://dx.doi.org/10.1063/1.1691190
16.
16. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15(10), 16171622 (2005).
http://dx.doi.org/10.1002/adfm.200500211
17.
17. T. M. Clarke and J. R. Durrant, Chem. Rev. 110(11), 67366767 (2010).
http://dx.doi.org/10.1021/cr900271s
18.
18. J. D. Cuthbert, Phys. Rev. B 1(4), 15521557 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1552
19.
19. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, Adv. Mater. 20(18), 35163520 (2008).
http://dx.doi.org/10.1002/adma.200800982
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4749813
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) RBS spectra of P3HT:PCBM solar cells without top electrode, including simulated spectra. (b) Oxygen content vs time as determined by RBS simulations. (c) RBS simulations show increases in roughness under increasing exposure time.

Image of FIG. 2.

Click to view

FIG. 2.

Atomic force microscopy measurements taken of the P3HT:PCBM active layer under exposure to the 70-70-70 test. The scale bars represent 1 m. There are significant increases in surface roughness with exposure time that contribute to the incorporation of oxygen into the cell.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Spin density vs. time for P3HT, PCBM, and P3HT:PCBM thin films. The drop in spin density in the P3HT:PCBM mix is attributed to the formation of a depletion region between the two phases. (b) ESR spectra of P3HT films. There is a peculiar evolution of the line shape that remains to be explained. (c) ESR spectra of PCBM films at different exposure times show increases in spin density.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Spin density measurements of the P3HT:PCBM active layer as a function of solar cell efficiency and exponential relationship with paramagnetic defect density that appears to say the reduction in efficiency depends largely on defect density. (b) Efficiency vs time that shows two stages of degradation, grain border corrosion and extensive degradation

Image of FIG. 5.

Click to view

FIG. 5.

(a) Exciton diffusion for inorganic materials with . (b) Exciton diffusion for organic materials with  ∼ . Excitons created near defects recombine within the vicinity of the defect, while excitons created outside this region are able to separate at a polymer-fullerene interface. (c) At a critical paramagnetic defect density, , the defects are separated by a distance equal to the Onsager capture radius. This results in percolating regions of defects.

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4749813
2012-09-06
2014-04-19

Abstract

We investigated the physical processes underlying the degradation of poly(3-hexyl-thiophene):phenyl-C-butyric acid methyl ester (P3HT:PCBM) photovoltaics under harsh environmental conditions during a 70-70-70 test (70% humidity at 70 °C from 0 to 70 h) using a variety of analytical techniques aimed at monitoring moisture incorporation. While the total oxygen content did not significantly increase during the test, a limited fraction of oxygen forms paramagnetic centers in P3HT, PCBM and, more limitedly, P3HT:PCBM heterojunctions. A strong correlation exists between the density of paramagnetic centers and the decay in the AM 1.5 photoconversion efficiency of the devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4749813.html;jsessionid=gfd2qto0paak.x-aip-live-02?itemId=/content/aip/journal/apl/101/10/10.1063/1.4749813&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Correlation between density of paramagnetic centers and photovoltaic degradation in polythiophene-fullerene bulk heterojunction solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4749813
10.1063/1.4749813
SEARCH_EXPAND_ITEM