1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Degradation induced decrease of the radiative quantum efficiency in organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4749815
1.
1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Silbey, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
http://dx.doi.org/10.1038/25954
2.
2. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
3.
3. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature (London) 459, 234238 (2009).
http://dx.doi.org/10.1038/nature08003
4.
4. T. Tsutsui, E. Aminaka, C. P. Lin, and D.-U. Kim, Trans. R. Soc. London, Ser. A 355, 801814 (1997).
http://dx.doi.org/10.1098/rsta.1997.0045
5.
5. S. Nowy, B. C. Krummacher, J. Frischeisen, N. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
http://dx.doi.org/10.1063/1.3043800
6.
6. T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, Appl. Phys. Lett. 99, 163302 (2011).
http://dx.doi.org/10.1063/1.3653475
7.
7. T. D. Schmidt, M. Flämmich, B. J. Scholz, D. Michaelis, C. Mayr, N. Danz, and W. Brütting, Proc. SPIE 8435, 843513 (2012).
http://dx.doi.org/10.1117/12.921537
8.
8. E. M. Purcell, Phys. Rev. 69, 674 (1946).
http://dx.doi.org/10.1103/PhysRev.69.674.2
9.
9. D. S. Setz, T. D. Schmidt, M. Flämmich, S. Nowy, J. Frischeisen, B. C. Krummacher, T. Dobbertin, K. Heuser, D. Michaelis, N. Danz, W. Brütting, and A. Winnacker, J. Photon. Energy 1, 011006 (2011).
http://dx.doi.org/10.1117/1.3528274
10.
10. M. Flämmich, J. Frischeisen, D. S. Setz, D. Michaelis, B. C. Krummacher, T. D. Schmidt, W. Brütting, and N. Danz, Org. Electron. 12, 1663 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.06.011
11.
11. N. C. Giebink and S. R. Forrest, Phys. Rev. B 77, 235215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235215
12.
12. F. So and D. Y. Kondakov, Adv. Mater. 22, 37623777 (2010).
http://dx.doi.org/10.1002/adma.200902624
13.
13. C. Fery, B. Racine, D. Vaufrey, H. Doyeux, and S. Cina, Appl. Phys. Lett. 87, 213502 (2005).
http://dx.doi.org/10.1063/1.2133922
14.
14. M. Flämmich, D. Michaelis, and N. Danz, Org. Electron. 12, 8391 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.09.019
15.
15. S. Mladenovski, S. Reineke, and K. Neyts, Opt. Lett. 34, 1375 (2009).
http://dx.doi.org/10.1364/OL.34.001375
16.
16. Z. D. Popovic, H. Aziz, A. Ioannidis, N.-X. Hu, and P. N. M. dos Anjos, Synth. Met. 123, 179181 (2001).
http://dx.doi.org/10.1016/S0379-6779(01)00472-6
17.
17. Z. D. Popovic, H. Aziz, A. Ioannidis, N.-X. Hu, and P. N. M. dos Anjos, J. Appl. Phys. 89, 46734675 (2001).
http://dx.doi.org/10.1063/1.1354631
18.
18. D. Y. Kondakov and R. H. Young, J. Appl. Phys. 108, 074513 (2010).
http://dx.doi.org/10.1063/1.3483251
19.
19. D. Y. Kondakov, J. Appl. Phys. 104, 084520 (2008).
http://dx.doi.org/10.1063/1.3006890
20.
20. N. C. Giebink, B. W. D'Andrade, M. S. Weaver, J. J. Brown, and S. R. Forrest, J. Appl. Phys. 105, 124514 (2009).
http://dx.doi.org/10.1063/1.3151689
21.
21. I. R. de Moraes, S. Scholz, B. Lüssem, and K. Leo, Appl. Phys. Lett. 99, 053302 (2011).
http://dx.doi.org/10.1063/1.3617459
22.
22. R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, J. Appl. Phys. 104, 014510 (2008).
http://dx.doi.org/10.1063/1.2951960
23.
23. S. Scholz, B. Lüssem, and K. Leo, Appl. Phys. Lett. 95, 183309 (2009).
http://dx.doi.org/10.1063/1.3257380
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4749815
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Device stack and chemical structures of the emitting guest/host system.

Image of FIG. 2.

Click to view

FIG. 2.

Accelerated degradation curve (blue, solid line: luminance; black, dashed line: voltage) for a constant driving current density of resulting in an initial luminance of about 15 000 cd/m2 for the red OLED stack with 249 nm ETL thickness. The inset shows the I-V-L characteristics of the device in the pristine state and after degradation.

Image of FIG. 3.

Click to view

FIG. 3.

Determination of the radiative quantum efficiency of the investigated emitting system in the pristine state (black dots) and after the degradation process (red triangles) using external quantum efficiency measurements at a current density of . The lines are optical simulations for different intrinsic radiative quantum efficiencies (black line: q = 0.68; red line: q = 0.40).

Image of FIG. 4.

Click to view

FIG. 4.

Time-resolved photoluminescence measurements for the pristine state (black, solid line) and after the degradation (red, dashed line) of the OLED with an ETL thickness of 168 nm. Green dashed lines show mono-exponential fits with an additional offset due to a constant background signal for both curves. The excited states lifetime gets reduced by the degradation process.

Image of FIG. 5.

Click to view

FIG. 5.

Determination of the radiative quantum efficiency of the used emitting system for the pristine state (black dots) and after the degradation process (red triangles) via changes of the excited states lifetime. The colored lines are optical simulations for different radiative quantum efficiencies and intrinsic lifetimes.

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4749815
2012-09-04
2014-04-23

Abstract

The efficiency decrease during electrical operation of organic light-emitting diodes is a crucial issue for both applied and fundamental research. In order to investigate degradation processes, we have performed an efficiency analysis for phosphorescent state-of-the-art devices in the pristine state and after an accelerated aging process at high current density resulting in a luminance drop to less than 60% of the initial value. This loss in efficiency can be explained by a decrease of the radiative quantum efficiency of the light-emitting guest/host system from 70% to 40%, while other factors determining the efficiency are not affected.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4749815.html;jsessionid=8yrj4edpkk75.x-aip-live-02?itemId=/content/aip/journal/apl/101/10/10.1063/1.4749815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Degradation induced decrease of the radiative quantum efficiency in organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4749815
10.1063/1.4749815
SEARCH_EXPAND_ITEM