1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Degradation induced decrease of the radiative quantum efficiency in organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4749815
1.
1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Silbey, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
http://dx.doi.org/10.1038/25954
2.
2. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
3.
3. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature (London) 459, 234238 (2009).
http://dx.doi.org/10.1038/nature08003
4.
4. T. Tsutsui, E. Aminaka, C. P. Lin, and D.-U. Kim, Trans. R. Soc. London, Ser. A 355, 801814 (1997).
http://dx.doi.org/10.1098/rsta.1997.0045
5.
5. S. Nowy, B. C. Krummacher, J. Frischeisen, N. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
http://dx.doi.org/10.1063/1.3043800
6.
6. T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, Appl. Phys. Lett. 99, 163302 (2011).
http://dx.doi.org/10.1063/1.3653475
7.
7. T. D. Schmidt, M. Flämmich, B. J. Scholz, D. Michaelis, C. Mayr, N. Danz, and W. Brütting, Proc. SPIE 8435, 843513 (2012).
http://dx.doi.org/10.1117/12.921537
8.
8. E. M. Purcell, Phys. Rev. 69, 674 (1946).
http://dx.doi.org/10.1103/PhysRev.69.674.2
9.
9. D. S. Setz, T. D. Schmidt, M. Flämmich, S. Nowy, J. Frischeisen, B. C. Krummacher, T. Dobbertin, K. Heuser, D. Michaelis, N. Danz, W. Brütting, and A. Winnacker, J. Photon. Energy 1, 011006 (2011).
http://dx.doi.org/10.1117/1.3528274
10.
10. M. Flämmich, J. Frischeisen, D. S. Setz, D. Michaelis, B. C. Krummacher, T. D. Schmidt, W. Brütting, and N. Danz, Org. Electron. 12, 1663 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.06.011
11.
11. N. C. Giebink and S. R. Forrest, Phys. Rev. B 77, 235215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235215
12.
12. F. So and D. Y. Kondakov, Adv. Mater. 22, 37623777 (2010).
http://dx.doi.org/10.1002/adma.200902624
13.
13. C. Fery, B. Racine, D. Vaufrey, H. Doyeux, and S. Cina, Appl. Phys. Lett. 87, 213502 (2005).
http://dx.doi.org/10.1063/1.2133922
14.
14. M. Flämmich, D. Michaelis, and N. Danz, Org. Electron. 12, 8391 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.09.019
15.
15. S. Mladenovski, S. Reineke, and K. Neyts, Opt. Lett. 34, 1375 (2009).
http://dx.doi.org/10.1364/OL.34.001375
16.
16. Z. D. Popovic, H. Aziz, A. Ioannidis, N.-X. Hu, and P. N. M. dos Anjos, Synth. Met. 123, 179181 (2001).
http://dx.doi.org/10.1016/S0379-6779(01)00472-6
17.
17. Z. D. Popovic, H. Aziz, A. Ioannidis, N.-X. Hu, and P. N. M. dos Anjos, J. Appl. Phys. 89, 46734675 (2001).
http://dx.doi.org/10.1063/1.1354631
18.
18. D. Y. Kondakov and R. H. Young, J. Appl. Phys. 108, 074513 (2010).
http://dx.doi.org/10.1063/1.3483251
19.
19. D. Y. Kondakov, J. Appl. Phys. 104, 084520 (2008).
http://dx.doi.org/10.1063/1.3006890
20.
20. N. C. Giebink, B. W. D'Andrade, M. S. Weaver, J. J. Brown, and S. R. Forrest, J. Appl. Phys. 105, 124514 (2009).
http://dx.doi.org/10.1063/1.3151689
21.
21. I. R. de Moraes, S. Scholz, B. Lüssem, and K. Leo, Appl. Phys. Lett. 99, 053302 (2011).
http://dx.doi.org/10.1063/1.3617459
22.
22. R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, J. Appl. Phys. 104, 014510 (2008).
http://dx.doi.org/10.1063/1.2951960
23.
23. S. Scholz, B. Lüssem, and K. Leo, Appl. Phys. Lett. 95, 183309 (2009).
http://dx.doi.org/10.1063/1.3257380
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4749815
Loading
/content/aip/journal/apl/101/10/10.1063/1.4749815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4749815
2012-09-04
2014-07-25

Abstract

The efficiency decrease during electrical operation of organic light-emitting diodes is a crucial issue for both applied and fundamental research. In order to investigate degradation processes, we have performed an efficiency analysis for phosphorescent state-of-the-art devices in the pristine state and after an accelerated aging process at high current density resulting in a luminance drop to less than 60% of the initial value. This loss in efficiency can be explained by a decrease of the radiative quantum efficiency of the light-emitting guest/host system from 70% to 40%, while other factors determining the efficiency are not affected.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4749815.html;jsessionid=1w5j9bo6fnxpi.x-aip-live-02?itemId=/content/aip/journal/apl/101/10/10.1063/1.4749815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Degradation induced decrease of the radiative quantum efficiency in organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4749815
10.1063/1.4749815
SEARCH_EXPAND_ITEM