1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Carrier doping to the organic Mott insulator by conjugating with tetrathiafulvalene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4750066
1.
1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
2.
2. M. Mas-Torrent and C. Rovira, Chem. Soc. Rev. 37, 827 (2008).
http://dx.doi.org/10.1039/b614393h
3.
3. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 024134 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
4.
4. H. L. Dong, C. L. Wang, and W. P. Hu, Chem. Commun. 46, 5211 (2010).
http://dx.doi.org/10.1039/c0cc00947d
5.
5. Semiconductors and Semimetals, edited by E. Conwell (Academic, New York, 1988), Vol. 27.
6.
6. J. S. Miller, J. C. Calabrese, H. Rommelmann, S. R. Chittipeddi, J. H. Zhang, W. M. Reiff, and A. J. Epstein, J. Am. Chem. Soc. 109, 769 (1987).
http://dx.doi.org/10.1021/ja00237a023
7.
7. Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, and G. Saito, Appl. Phys. Lett. 88, 073504 (2006).
http://dx.doi.org/10.1063/1.2173226
8.
8. H. Alves, A. S. Molinari, H. Xie, and A. F. Morpurgo, Nat. Mater. 7, 574 (2008).
http://dx.doi.org/10.1038/nmat2205
9.
9. A. H. Arkenbout, T. Uemura, J. Takeya, and T. T. M. Palstra, Appl. Phys. Lett. 95, 173104 (2009).
http://dx.doi.org/10.1063/1.3254328
10.
10. G. C. Yuan, Z. Xu, C. Gong, Q. J. Cai, Z. S. Lu, J. S. Shi, F. J. Zhang, S. L. Zhao, N. Xu, and C. M. Li, Appl. Phys. Lett. 94, 153308 (2009).
http://dx.doi.org/10.1063/1.3115828
11.
11. Y. Takahashi, K. Hayakawa, H. Hasegawa, T. Inabe, and T. Naito, J. Phys. Chem. C 116, 700 (2012).
http://dx.doi.org/10.1021/jp2074368
12.
12. Organic Conductors, edited by J.-P. Farges (Marcel Dekker, New York, 1994).
13.
13. S. Etemad, E. M. Engler, T. D. Schultz, T. Penney, and B. A. Scott, Phys. Rev. B 17, 513528(1978).
http://dx.doi.org/10.1103/PhysRevB.17.513
14.
14. Y. Kawasugi, H. M. Yamamoto, N. Tajima, T. Fukunaga, K. Tsukagoshi, and R. Kato, Phys. Rev. Lett. 103, 116801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.116801
15.
15. S. Wall, D. Brida, S. R. Clark, H. P. Ehrke, D. Jaksch, A. Ardavan, S. Bonora, H. Uemura, Y. Takahashi, T. Hasegawa et al., Nat. Phys. 7, 114 (2011).
http://dx.doi.org/10.1038/nphys1831
16.
16. J. Tsutsumi, T. Yamada, H. Matsui, S. Haas, and T. Hasegawa, Phys. Rev. Lett. 105, 226601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.226601
17.
17. T. Hasegawa, S. Kagoshima, T. Mochida, S. Sugiura, and Y. Iwasa, Solid State Commun. 103, 489 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00226-3
18.
18. L. Ouahab, J. Padiou, D. Grandjean, C. Garrigou-Lagrange, P. Delhaes, and M. Bencharif, J. Chem. Soc. Chem. Commun. 1989, 1038 (1989).
http://dx.doi.org/10.1039/c39890001038
19.
19. T. Mochida, T. Hasegawa, S. Kagoshima, S. Sugiura, and Y. Iwasa, Synth. Met. 86, 1797 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80908-3
20.
20. J. E. Eldridge, C. C. Homes, J. M. Williams, A. M. Kini, and H. H. Wang, Spectrochim. Acta A 51, 947 (1995).
http://dx.doi.org/10.1016/0584-8539(94)00236-5
21.
21. S. Matsuzaki, T. Moriyama, and K. Toyoda, Solid State Commun. 34, 857 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90111-8
22.
22. S. Matsuzaki, R. Kuwata, and K. Toyoda, Solid State Commun. 33, 403 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90429-9
23.
23. R. S. Potember, T. O. Poehler, and D. O. Cowan, Appl. Phys. Lett. 34, 405 (1979).
http://dx.doi.org/10.1063/1.90814
24.
24. G. Horowitz and P. Delannoy, J. Appl. Phys. 70, 469 (1991).
http://dx.doi.org/10.1063/1.350250
25.
25. H. Matsui, T. Hasegawa, Y. Tokura, M. Hiraoka, and T. Yamada, Phys. Rev. Lett. 100, 126601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.126601
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4750066
Loading
/content/aip/journal/apl/101/10/10.1063/1.4750066
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4750066
2012-09-05
2014-09-20

Abstract

The electrical conductivity of the organic Mott insulator ET-FTCNQ (ET = bis(ethylenedithio)tetrathiafulvalene, FTCNQ = 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane) crystal was found to be enhanced by conjugation with a tetrathiafulvalene (TTF) single crystal on its surface; surface sheet resistance decreased from 5 × l05 to 2 × 103 Ω/sq. The mechanism of this decrement was investigated through optical and atomic force microscopy measurements at the interface. When TTF was conjugated to the ET-FTCNQ crystal, electron injection from TTF and complex formation between TTF and FTCNQ occurred. Neutral ET molecules were consequently generated at the interface, and this charge doping broke the Mott insulating state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4750066.html;jsessionid=93p8r85s6lhs2.x-aip-live-02?itemId=/content/aip/journal/apl/101/10/10.1063/1.4750066&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carrier doping to the organic Mott insulator by conjugating with tetrathiafulvalene
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4750066
10.1063/1.4750066
SEARCH_EXPAND_ITEM