1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Inverted top-emitting blue electrophosphorescent organic light-emitting diodes with high current efficacy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4750141
1.
1. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51(12), 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, and Z. H. Lu, Science 332(6032), 944 (2011).
http://dx.doi.org/10.1126/science.1202992
3.
3. C. C. Wu, C. W. Chen, C. L. Lin, and C. J. Yang, J. Disp. Technol. 1(2), 248 (2005).
http://dx.doi.org/10.1109/JDT.2005.858942
4.
4. J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 88(2), 1073 (2000).
http://dx.doi.org/10.1063/1.373779
5.
5. S. F. Chen, L. L. Deng, J. Xie, L. Peng, L. H. Xie, Q. L. Fan, and W. Huang, Adv. Mater. 22(46), 5227 (2010).
http://dx.doi.org/10.1002/adma.201001167
6.
6. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 56(9), 799 (1990).
http://dx.doi.org/10.1063/1.103177
7.
7. M. C. Gather, A. Kohnen, and K. Meerholz, Adv. Mater. 23(2), 233 (2011).
http://dx.doi.org/10.1002/adma.201002636
8.
8. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79(13), 2082 (2001).
http://dx.doi.org/10.1063/1.1400076
9.
9. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett. 82(15), 2422 (2003).
http://dx.doi.org/10.1063/1.1568146
10.
10. J.-K. Bin, N.-S. Cho, and J.-I. Hong, Adv. Mater. 24(21), 2911 (2012).
http://dx.doi.org/10.1002/adma.201200972
11.
11. J. S. Chen, C. S. Shi, Q. Fu, F. C. Zhao, Y. Hu, Y. L. Feng, and D. G. Ma, J. Mater. Chem. 22(11), 5164 (2012).
http://dx.doi.org/10.1039/c2jm16463a
12.
12. H. Lee, I. Park, J. Kwak, D. Y. Yoon, and C. Lee, Appl. Phys. Lett. 96(15), 153306 (2010).
http://dx.doi.org/10.1063/1.3400224
13.
13. Q. Wang, Z. Q. Deng, J. S. Chen, and D. G. Ma, Opt. Lett. 35(4), 462 (2010).
http://dx.doi.org/10.1364/OL.35.000462
14.
14. R. Steyrleuthner, S. Bange, and D. Neher, J. Appl. Phys. 105(6), 064509 (2009).
http://dx.doi.org/10.1063/1.3086307
15.
15. S. J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater. 20(11), 2125 (2008).
http://dx.doi.org/10.1002/adma.200701730
16.
16. E. Najafabadi, K. A. Knauer, W. Haske, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 101(2), 023304 (2012).
http://dx.doi.org/10.1063/1.4736573
17.
17. V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D'Andrade, C. Adachi, S. R. Forrest, and M. E. Thompson, New J. Chem. 26(9), 1171 (2002).
http://dx.doi.org/10.1039/b204301g
18.
18. S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, Adv. Mater. 20(21), 4189 (2008).
http://dx.doi.org/10.1002/adma.200801375
19.
19. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D'Andrade, and S. R. Forrest, Org. Electron. 4(2–3), 77 (2003).
http://dx.doi.org/10.1016/j.orgel.2003.08.003
20.
20. A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41(21), 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
21.
21. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, and Z. H. Lu, Nat. Photonics 5(12), 753 (2011).
http://dx.doi.org/10.1038/nphoton.2011.259
22.
22. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem, and K. Leo, Appl. Phys. Lett. 97(25), 253308 (2010).
http://dx.doi.org/10.1063/1.3530447
23.
23. J. Lee, S. Hofmann, M. Furno, M. Thomschke, Y. H. Kim, B. Lussem, and K. Leo, Org. Electron. 12(8), 1383 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.006
24.
24. S. Hofmann, M. Thomschke, B. Lussem, and K. Leo, Opt. Express 19(23), A1250 (2011).
http://dx.doi.org/10.1364/OE.19.0A1250
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4750141
Loading
/content/aip/journal/apl/101/10/10.1063/1.4750141
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4750141
2012-09-05
2014-09-22

Abstract

Two different types of inverted top-emitting blue electrophosphorescent organic light-emitting diodes (OLEDs) are demonstrated that differ only in the choice of high electron mobility transport layers. The electron transport layer consists of either 1,3,5-tri(-pyrid-3-yl-phenyl)benzene (TpPyPB) or 1,3,5-tri(-pyrid-3-yl-phenyl)benzene) (TmPyPB). Devices with TpPyPB exhibit a current efficacy of 5.1 cd/A at 1259 cd/m2. OLEDs with TmPyPB show higher performance with a current efficacy of 33.6 cd/A at 1126 cd/m2. The difference in performance of OLEDs with TmPyPB is due to a combination of TmPyPB's higher triplet energy that decreases exciton transfer to the ETL and altered charge balance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4750141.html;jsessionid=k6uv5cql8og9.x-aip-live-06?itemId=/content/aip/journal/apl/101/10/10.1063/1.4750141&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inverted top-emitting blue electrophosphorescent organic light-emitting diodes with high current efficacy
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4750141
10.1063/1.4750141
SEARCH_EXPAND_ITEM