1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
C60-based hot-electron magnetic tunnel transistor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/10/10.1063/1.4751030
1.
1. B. Dlubak, M. B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W. A. De Heer, F. Petroff, A. Anane1, P. Seneor, and A. Fert, Nat. Phys. 8, 557 (2012).
http://dx.doi.org/10.1038/nphys2331
2.
2. W. W. Han, K. M. McCreary, K. Pi, W. H. Wang, Y. Li, H. Wen, J. R. Chen, and R. K. Kawakami, J. Magn. Magn. Mater 324, 369 (2012).
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
3.
3. T. Maassen, J. J. van den Berg, N. IJbema, F. Fromm, T. Seyller, R. Yakimova, B. J. van Wees, Nano Lett. 12, 1498 (2012).
http://dx.doi.org/10.1021/nl2042497
4.
4. L. E. Hueso, J. M. Pruneda, V. Ferrari, G. Burnell, J. P. Valdes-Herrera, B. D. Simons, P. B. Littlewood, E. Artacho, A. Fert, and N. D. Mathur, Nature (London), 445, 410 (2007).
http://dx.doi.org/10.1038/nature05507
5.
5. V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nat. Mater. 8, 707 (2009).
http://dx.doi.org/10.1038/nmat2510
6.
6. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature (London) 427, 821 (2004).
http://dx.doi.org/10.1038/nature02325
7.
7. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, and A. Fert, Nat. Phys. 6, 615 (2010).
http://dx.doi.org/10.1038/nphys1688
8.
8. T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98, 016601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.016601
9.
9. V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Phys. Rev. B 78, 115203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115203
10.
10. M. Gobbi, F. Golmar, R. Llopis, F. Casanova, and L. E. Hueso, Adv. Mater. 23, 1609 (2011).
http://dx.doi.org/10.1002/adma.201004672
11.
11. T. L. A. Tran, T. Q. Le, J. G. M. Sanderink, W. G. van der Wiel, and M. P. de Jong, Adv. Funct. Mater. 22, 1180 (2012).
http://dx.doi.org/10.1002/adfm.201102584
12.
12. C. Barraud, C. Deranlot, P. Seneor, R. Mattana, B. Dlubak, S. Fusil, K. Bouzehouane, D. Deneuve, F. Petroff, and A. Fert, Appl. Phys. Lett. 96, 072502 (2010).
http://dx.doi.org/10.1063/1.3300717
13.
13. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R4790
14.
14. A. Fert, J.-M. George, H. Jaffrès, and R. Mattana, IEEE Trans. Electron Devices 54, 921 (2007).
http://dx.doi.org/10.1109/TED.2007.894372
15.
15. R. Jansen, J. Phys. D 36, R289 (2003).
http://dx.doi.org/10.1088/0022-3727/36/19/R01
16.
16. D. J. Monsma, J. C. Lodder, Th. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.5260
17.
17. S. van Dijken, X. Jiang, and S. S. P. Parkin, Appl. Phys. Lett. 83, 951 (2003).
http://dx.doi.org/10.1063/1.1592001
18.
18. R. Jansen, P. S. A. Kumar, O. M. J. van't Erve, R. Vlutters, P. de Haan, and J. C. Lodder, Phys. Rev. Lett. 85, 3277 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3277
19.
19. S. van Dijken, X. Jiang, and S. S. P. Parkin, Phys. Rev. Lett. 90, 197203 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.197203
20.
20. S. van Dijken, X. Jiang, S. S. P. Parkin, J. Appl. Phys. 97, 043712 (2005).
http://dx.doi.org/10.1063/1.1814422
21.
21. B. G. Park, E. Haq, T. Banerjee, B. C. Min, J. C. Lodder, and R. Jansen, J. Appl. Phys. 99, 08S703 (2006).
http://dx.doi.org/10.1063/1.2177202
22.
22. T. Nagahama, H. Saito, and S. Yuasa, Appl. Phys. Lett. 96, 112509 (2010).
http://dx.doi.org/10.1063/1.3360222
23.
23. M. Gobbi, A. Pascual, F. Golmar, R. Llopis, F. Casanova, and L. E. Hueso, Org. Electron. 13, 366 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.002
24.
24. M. S. Meruvia, I. A. Hummelgen, M. L. Sartorelli, A. A. Pasa, and W. Schwarzacher, Appl. Phys. Lett. 84, 3978 (2004).
http://dx.doi.org/10.1063/1.1751218
25.
25. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2472
26.
26. G. Binasch, P. Griinberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.4828
27.
27. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
28.
28. J. S. Jiang, J. E. Pearson, and S. D. Bader, Phys. Rev. Lett. 106, 156807 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156807
29.
29. X. Jiang, R. Wang, S. van Dijken, R. Shelby, R. Macfarlane, G. S. Solomon, J. Harris, and S. S. P. Parkin, Phys. Rev. Lett. 90, 2566031 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.256603
30.
30. I. Appelbaum, B. Huang, and D. J. Monsma, Nature (London) 447, 295 (2007).
http://dx.doi.org/10.1038/nature05803
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4751030
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The energy diagram of the device when the spin valve is in the parallel state (a) and in the antiparallel state (b). The emitter-base voltage VEB determines the alignment of the Fermi Energy at the tunnel junction terminals, while at the metal/C60 interface an energy barrier naturally forms. Under these conditions, and assuming a perfect spin filtering effect, the current enters the C60 collector only when the spin valve is in the parallel state.

Image of FIG. 2.

Click to view

FIG. 2.

I-V traces measured across the tunnel junction (a) and the C60 layer (b). (c) Hot-electron current IBC measured at the collector terminal when the emitter-base voltage VEB is swept and the base-collector voltage VBC is kept at 0 V. Insets: energy diagrams to illustrate how the voltages are applied at the different terminals.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Base-collector current IBC as a function of the applied magnetic field (measured at VEB = −1.4 V, VBC = 0 V). Red and blue traces correspond to negative to positive and positive to negative field sweep, respectively. On the right axis, the corresponding magnetocurrent. (b) Magnetocurrent as a function of the emitter-base voltage VEB. Inset: Energy diagram showing how the voltages are applied for the measurement in (a) and (b).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Dependence of the magnetocurrent with the base-collector voltage VBC. Inset: Energy diagram showing how the voltages are applied for the measurements in (a) and (b). (b) Magnetocurrent curves for different VBC values.

Loading

Article metrics loading...

/content/aip/journal/apl/101/10/10.1063/1.4751030
2012-09-04
2014-04-19

Abstract

A C60-based magnetic tunnel transistor is presented. The device is based on the collection of spin-filtered hot-electrons at a metal/C60 interface, and it allows an accurate measurement of the energy level alignment at such interface. A 89% change in the collected current under the application of a magnetic field demonstrates that these devices can be used as sensitive magnetic field sensors compatible with soft electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/10/1.4751030.html;jsessionid=wzrz51uu0773.x-aip-live-03?itemId=/content/aip/journal/apl/101/10/10.1063/1.4751030&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: C60-based hot-electron magnetic tunnel transistor
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/10/10.1063/1.4751030
10.1063/1.4751030
SEARCH_EXPAND_ITEM