1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/11/10.1063/1.4748123
1.
1. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
2.
2. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
3.
3. T.-Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).
http://dx.doi.org/10.1021/ja200314m
4.
4. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, and W. You, Angew. Chem., Int. Ed. 50, 2995 (2011).
http://dx.doi.org/10.1002/anie.201005451
5.
5. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011).
http://dx.doi.org/10.1002/adma.201103006
6.
6. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
7.
7. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).
http://dx.doi.org/10.1063/1.3650472
8.
8. M. Zhang, H. Wang, H. Tian, Y. Geng, and C. W. Tang, Adv. Mater. 23, 4960 (2011).
http://dx.doi.org/10.1002/adma.201102173
9.
9. J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li, and Y. Chen, Chem. Mater. 23, 4666 (2011).
http://dx.doi.org/10.1021/cm202588h
10.
10. L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou, F. Lin, C.-W. Chen, Y.-H. Liu, and K.-T. Wong, J. Am. Chem. Soc. 133, 15822 (2011).
http://dx.doi.org/10.1021/ja205126t
11.
11. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, Adv. Funct. Mater. 21, 3019 (2011).
http://dx.doi.org/10.1002/adfm.201002760
12.
12. V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Bürckstümmer, E. V. Tulyakova, and F. Würthner, Adv. Energy Mater. 1, 888 (2011).
http://dx.doi.org/10.1002/aenm.201100283
13.
13. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nature Mater. 11, 44 (2012).
http://dx.doi.org/10.1038/nmat3160
14.
14. S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu, and K.-T. Wong, Chem. Commun. 48, 1857 (2012).
http://dx.doi.org/10.1039/c2cc16390j
15.
15. S. M. Schultes, P. Sullivan, S. Heutz, B. M. Sanderson, and T. S. Jones, Mater. Sci. Eng. C 25, 858 (2005).
http://dx.doi.org/10.1016/j.msec.2005.06.039
16.
16. Z. R. Hong, Z. H. Huang, and X. T. Zeng, Chem. Phys. Lett. 425, 62 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.05.010
17.
17. Z. R. Hong, B. Maennig, R. Lessmann, M. Pfeiffer, K. Leo, and P. Simon, Appl. Phys. Lett. 90, 203505 (2007).
http://dx.doi.org/10.1063/1.2739364
18.
18. L. Chen, Y. Tang, X. Fan, C. Zhang, Z. Chu, D. Wang, and D. Zou, Org. Electron. 10, 724 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.024
19.
19. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett. 94, 253303 (2009).
http://dx.doi.org/10.1063/1.3154554
20.
20. M. Hermenau, S. Scholz, K. Leo, and M. Riede, Sol. Energy Mater. Sol. Cells 95, 1278 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.09.031
21.
21. M. Hermenau, M. Riede, K. Leo, S. A. Gevorgyan, F. C. Krebs, and K. Norrman, Sol. Energy Mater. Sol. Cells 95, 1268 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.001
22.
22. J. W. Kim, H. J. Kim, H. H. Lee, T. Kim, and J.-J. Kim, Adv. Funct. Mater. 21, 2067 (2011).
http://dx.doi.org/10.1002/adfm.201002601
23.
23. M. Rusu, J. Strotmann, M. Vogel, M. C. Lux-Steiner, and K. Fostiropoulos, Appl. Phys. Lett. 90, 153511 (2007).
http://dx.doi.org/10.1063/1.2722674
24.
24. R. Lessmann, Z. Hong, S. Scholz, B. Maennig, M. K. Riede, and K. Leo, Org. Electron. 11, 539 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.12.010
25.
25. S. Schäfer, A. Petersen, T. Wagner, R. Kniprath, D. Lingenfelser, A. Zen, T. Kirchartz, B. Zimmermann, U. Würfel, X. Feng, and T. Mayer, Phys. Rev. B 83, 165311 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165311
26.
26. Y. Kanai, T. Matsushima, and H. Murata, Thin Solid Films 518, 537 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.07.015
27.
27. I. Hancox, P. Sullivan, K. V. Chauhan, N. Beaumont, L. A. Rochford, R. A. Hatton, and T. S. Jones, Org. Electron. 11, 2019 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.09.014
28.
28. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).
http://dx.doi.org/10.1002/adma.201100038
29.
29. C. H. Cheng, J. Wang, G. T. Du, S. H. Shi, Z. J. Du, Z. Q. Fan, J. M. Bian, and M. S. Wang, Appl. Phys. Lett. 97, 083305 (2010).
http://dx.doi.org/10.1063/1.3483159
30.
30. J. W. Kim, H. J. Kim, and J.-J. Kim, “High performance organic planar heterojunction solar cells by controlling the molecular orientation,” Curr. Appl. Phys. (in press).
http://dx.doi.org/10.1016/j.cap.2012.06.003
31.
31. H.-S. Shim, H. J. Kim, J. W. Kim, S.-Y. Kim, W.-I. Jeong, T.-M. Kim, and J.-J. Kim, J. Mater. Chem. 22, 9077 (2012).
http://dx.doi.org/10.1039/c2jm30417a
32.
32. B. P. Rand, D. Cheyns, K. Vasseur, N. C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.-L. Brédas, and J. Genoe, Adv. Funct. Mater. 22, 2987 (2012).
http://dx.doi.org/10.1002/adfm.201200512
33.
33. Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, M. Kitamura, K. Nakatsu, and Y. Yoshida, Appl. Phys. Lett. 100, 233302 (2012).
http://dx.doi.org/10.1063/1.4726118
34.
34. J.-H. Lee, D.-S. Leem, and J.-J. Kim, Org. Electron. 9, 805 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.011
35.
35. T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, Org. Electron. 8, 702 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.004
36.
36. P. Sullivan, T. S. Jones, A. J. Ferguson, and S. Heutz, Appl. Phys. Lett. 91, 233114 (2007).
http://dx.doi.org/10.1063/1.2821229
37.
37. B. Yu, L. Huang, H. Wang, and D. Yan, Adv. Mater. 22, 1017 (2010).
http://dx.doi.org/10.1002/adma.200903023
38.
38. K. Norrman and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 213 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.03.004
39.
39. K. Q. Ngo, P. Philipp, Y. Jin, S. E. Morris, M. Shtein, J. Kieffer, and T. Wirtz, Surf. Interface Anal. 43, 194 (2011).
http://dx.doi.org/10.1002/sia.3451
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4748123 for TOF-SIMS data of depth profiles for additional ions. [Supplementary Material]
41.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4748123
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

characteristics of ZnPc/C planar heterojunction solar cells. The control device (black square) is comprised of ITO/ZnPc (25 nm)/C (40 nm)/BCP (8 nm)/Al. The devices with a 3-nm-thick CuI (red circle) layer and also with a 3-nm-thick MoO/3-nm-thick CuI layer (blue triangle) inserted between the ITO and ZnPc layers in the control device are shown.

Image of FIG. 2.

Click to view

FIG. 2.

The evolution of the curves of the devices under the illumination of the AM 1.5 G 100 mW cm−2 solar simulated light for 60 min. (a) The control device, (b) the device with the CuI (3 nm) interfacial layer, and (c) the device with the MoO (3 nm)/CuI (3 nm) interfacial layer are compared. The red square lines represent the characteristics of the pristine samples and the blue circle lines represent the characteristics after illumination with solar simulated light for 60 min.

Image of FIG. 3.

Click to view

FIG. 3.

The normalized photovoltaic parameters of (a) the control device, (b) the device with the CuI (3 nm) interfacial layer, and (c) the device with the MoO (3 nm)/CuI (3 nm) interfacial layer, under the illumination of solar simulated light.

Image of FIG. 4.

Click to view

FIG. 4.

The evolution of the curves of the CuI (3 nm)/control devices under the illumination of three different light sources for 30 min. Laser light with (a) 325 nm, (b) 442 nm, and (c) 633 nm wavelengths was used. The red square lines represent the curves of the pristine samples and the blue circle lines represent the curves after 30 min of illumination.

Image of FIG. 5.

Click to view

FIG. 5.

TOF-SIMS depth profiles of the samples in the negative mode with the structure of (a) ITO/ZnPc (25 nm)/C (40 nm), (b) ITO/CuI (3 nm)/ZnPc (25 nm)/C (40 nm), and (c) ITO/MoO (3 nm)/CuI (3 nm)/ZnPc (25 nm)/C (40 nm).

Tables

Generic image for table

Click to view

Table I.

Summary of solar cell parameters of the devices fabricated without and with CuI and MoO/CuI interfacial layers.

Loading

Article metrics loading...

/content/aip/journal/apl/101/11/10.1063/1.4748123
2012-09-10
2014-04-21

Abstract

The use of CuI and MoO as a double interfacial layer between indium tin oxide (ITO) and a zinc phthalocyanine (ZnPc) layer improves the power conversion efficiency ( ) and the photo-stability at the same time in ZnPc based solar cells. Insertion of CuI without MoO increased more than 2 times to 3.3%. However, the photo-stability is lowered even further due to diffusion of Cu. Insertion of the MoO layer between the ITO and CuI prevents the diffusion of Cu under UV illumination to achieve the improved photo-stability and .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/11/1.4748123.html;jsessionid=ccvbln4xu3fh.x-aip-live-01?itemId=/content/aip/journal/apl/101/11/10.1063/1.4748123&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4748123
10.1063/1.4748123
SEARCH_EXPAND_ITEM