1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/11/10.1063/1.4752434
1.
1. P. E. Keivanidis, S. H. Khong, P. K. H. Ho, N. C. Greenham, and R. H. Friend, Appl. Phys. Lett. 94(17), 173303 (2009).
http://dx.doi.org/10.1063/1.3120547
2.
2. M. Binda, A. Iacchetti, D. Natali, L. Beverina, M. Sassi, and M. Sampietro, Appl. Phys. Lett. 98(7), 073303 (2011).
http://dx.doi.org/10.1063/1.3553767
3.
3. P. Peumans, V. Bulović, and S. R. Forrest, Appl. Phys. Lett. 76(26), 38553857 (2000).
http://dx.doi.org/10.1063/1.126800
4.
4. M. C. Barr, J. A. Rowehl, R. R. Lunt, J. J. Xu, A. N. Wang, C. M. Boyce, S. G. Im, V. Bulović, and K. K. Gleason, Adv. Mater. 23(31), 35003505 (2011).
http://dx.doi.org/10.1002/adma.201101263
5.
5. I. Nausieda, K. Ryu, I. Kymissis, A. I. T. Akinwande, V. Bulović, and C. G. Sodini, IEEE Trans. Electron. Devices 55(2), 527532 (2008).
http://dx.doi.org/10.1109/TED.2007.913081
6.
6. S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. N. Bao, Nat. Mater. 9(10), 859864 (2010).
http://dx.doi.org/10.1038/nmat2834
7.
7. F. Würthner and K. Meerholz, Chem. Eur. J. 16(31), 93669373 (2010).
http://dx.doi.org/10.1002/chem.201001153
8.
8. F. Würthner, T. E. Kaiser, and C. R. Saha-Moller, Angew. Chem. Int. Ed. 50(15), 33763410 (2011).
http://dx.doi.org/10.1002/anie.201002307
9.
9. M. S. Bradley, J. R. Tischler, and V. Bulović, Adv. Mater. 17(15), 18811886 (2005).
http://dx.doi.org/10.1002/adma.200500233
10.
10. J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, Org. Electron. 8(2–3), 94113 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.01.008
11.
11. B. J. Walker, A. Dorn, M. G. Bawendi, and V. Bulović, Nano Lett. 11(7), 26552659 (2011).
http://dx.doi.org/10.1021/nl200679n
12.
12. G. Konstantatos and E. H. Sargent, Nat. Nanotechnol. 5(12), 391400 (2010).
http://dx.doi.org/10.1038/nnano.2010.78
13.
13. G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulović, Phys. Rev. B 82(11), 113106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.113106
14.
14. R. R. Lunt, J. B. Benziger, and S. R. Forrest, Adv. Mater. 22(11), 12331236 (2010).
http://dx.doi.org/10.1002/adma.200902827
15.
15. J. Wenus, S. Ceccarelli, D. G. Lidzey, A. I. Tolmachev, J. L. Slominskii, and J. L. Bricks, Org. Electron. 8(2–3), 120126 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.06.006
16.
16. P. R. Brown, R. R. Lunt, N. Zhao, T. P. Osedach, D. D. Wanger, L. Y. Chang, M. G. Bawendi, and V. Bulović, Nano Lett. 11(7), 29552961 (2011).
http://dx.doi.org/10.1021/nl201472u
17.
17. J. R. Tischler, M. S. Bradley, and V. Bulovic, Opt. Lett. 31(13), 20452047 (2006).
http://dx.doi.org/10.1364/OL.31.002045
18.
18. R. H. Bube and A. L. Fahrenbruch, Advances in Electronics and Electron Physics (Academic, New York, 1981), pp. 163.
19.
19. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93(7), 36933723 (2003).
http://dx.doi.org/10.1063/1.1534621
20.
20. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86(1), 487496 (1999).
http://dx.doi.org/10.1063/1.370757
21.
21. A. Rogalski, Infrared Detectors (Gordon and Breach Science, Amsterdam, 2000).
22.
22. A. Rogalski, Opto-Electron. Rev. 12(2), 221245 (2004).
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4752434 for additional details regarding fabrication of the U3 photodiode structures, for the determination of frontier energy levels with cyclic voltammetry, for fitting J-V characteristics to an ideal diode equation, and for measurements of absorption and internal quantum efficiency. [Supplementary Material]
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752434
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Molecular structure of . (b) Device structure with direction of illumination indicated with arrows. (c) Energy band diagram of the structure. HOMO and LUMO levels for are determined by cyclic-voltammetry. The remaining energy levels are taken from literature.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Current-voltage characteristic of a typical device in the dark and under illumination of 1.7 mW cm−2 with λ = 785 nm light. thickness is 10.5 nm and the MoO thickness is 60 nm. (inset) as a function of illumination intensity. A linear fit to the data (scatter plot) is shown in red (solid line). (b) External quantum efficiency of the same device as in (a), shown in red. Also shown are the absorption spectra of monomeric (dotted line), measured in a 3.3 g ml−1 solution of ultrapure water, and J-aggregated (black line), measured in a thin film spun-cast from solution with concentration of 8 mg ml−1.

Image of FIG. 3.

Click to view

FIG. 3.

(a) EQE as a function of layer thickness with the MoO thickness fixed at 60 nm. Black line is a fit to the EQE based on the model described in the text with exciton diffusion length,  = 2.0 ± 0.4 nm. Grey circles indicate that the obtained EQE is influenced by a loss of photovoltaic performance in the device and are not due to optical interference effects (see inset). (inset) characteristics for devices with different thicknesses under illumination of 1.7 mW cm−2 at λ = 785 nm. (b) EQE as a function of MoO spacer layer thickness with thickness fixed at 8.1 nm. Black line is a fit with  = 2.0 ± 0.4 nm. (c) Contour plot showing EQE as a function of the and MoO layer thicknesses predicted by the model described in the text.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Peak responsivity and differential resistance, , as a function of layer thickness. (b) Specific detectivity as a function of layer thickness. (c) Bode plot showing roll-off of device performance with 3-dB frequency of 92 kHz. (inset) response of device at 10 kHz.

Loading

Article metrics loading...

/content/aip/journal/apl/101/11/10.1063/1.4752434
2012-09-11
2014-04-24

Abstract

We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, , and transparent metal-oxide charge transport layers. The high absorption coefficient of the film, combined with the use of a reflective anode and optical spacer layer, results in a zero-bias external quantum efficiency of 16.1 ± 0.1% (λ = 756 nm) for a device containing an 8.1 ± 0.3 nm-thick film. The specific detectivity () and response speed ( ) of a fully optimized device are measured to be (4.3 ± 0.1) × 1011 cm Hz1/2 W−1 and 92 kHz, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/11/1.4752434.html;jsessionid=k74xoxv0kpkh.x-aip-live-02?itemId=/content/aip/journal/apl/101/11/10.1063/1.4752434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752434
10.1063/1.4752434
SEARCH_EXPAND_ITEM