1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electroluminescence and electric current response spectroscopy applied to the characterization of polymer light-emitting electrochemical cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/11/10.1063/1.4752438
1.
1. Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science 269, 1086 (1995).
http://dx.doi.org/10.1126/science.269.5227.1086
2.
2. J. C. DeMello, N. Tessler, S. C. Graham, and R. H. Friend, Phys. Rev. B 57, 12951 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12951
3.
3. D. L. Smith, J. Appl. Phys. 81, 2869 (1997).
http://dx.doi.org/10.1063/1.363966
4.
4. J. A. Manzanares, H. Reiss, and A. J. Heeger, J. Phys. Chem. B 102, 4327 (1998).
http://dx.doi.org/10.1021/jp973415o
5.
5. J. D. Slinker, J. A. DeFranco, M. J. Jaquith, W. R. Silveira, Y. W. Zhong, J. M. Moran-Mirabal, H. G. Craighead, H. D. Abruña, J. A. Marohn, and G. G. Malliaras, Nature Mater. 6, 894 (2007).
http://dx.doi.org/10.1038/nmat2021
6.
6. J. H. Shin, N. D. Robinson, S. Xiao, and L. Edman, Adv. Funct. Mater. 17, 1807 (2007).
http://dx.doi.org/10.1002/adfm.200600984
7.
7. D. Hohertz and J. Gao, Adv. Mater. 20, 3298 (2008).
http://dx.doi.org/10.1002/adma.200800068
8.
8. Y. Lei, F. Teng, Y. Hou, Z. Lou, and Y. Wang, Appl. Phys. Let. 95, 101105 (2009).
http://dx.doi.org/10.1063/1.3224178
9.
9. M. Lenes, G. Garcia-Belmonte, D. Tordera, A. Pertegás, J. Bisquert, and H. J. Bolink, Adv. Funct. Mater. 21, 1581 (2011).
http://dx.doi.org/10.1002/adfm.201002587
10.
10. S. van Reenen, P. Matyba, A. Dzwilewski, R. A. J. Janssen, L. Edman, and M. Kemerink, Adv. Funct. Mater. 21, 1795 (2011).
http://dx.doi.org/10.1002/adfm.201002360
11.
11. S. van Reenen, P. Matyba, A. Dzwilewski, R. A. J. Janssen, L. Edman, and M. Kemerink, J. Am. Chem. Soc. 132, 13776 (2010).
http://dx.doi.org/10.1021/ja1045555
12.
12. Q. Pei, Y. Yang, G. Yu, C. Zhang, and A. J. Heeger, J. Am. Chem. Soc. 118, 3922 (1996).
http://dx.doi.org/10.1021/ja953695q
13.
13. Q. Pei and A. J. Heeger, Nature Mater. 7, 167, 168 (2008).
http://dx.doi.org/10.1038/nmat2128
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.4752438 for details on the samples preparation procedure. [Supplementary Material]
15.
15. G. Gozzi, L. F. Santos, and R. M. Faria, “Transient and d.c. analysis of the operation mechanism of light-emitting electrochemical cells,” Europhys. Lett. (submitted).
16.
16. L. F. Santos, L. M. Carvalho, F. E. G. Guimarães, and R. M. Faria, Synth. Met. 121, 1697 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)01200-5
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752438
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Device voltage, current, and EL output as a function of the time for different modulation frequencies. Modulation voltage amplitude: 8Vpp. (a) 200 Hz; (b) 20 Hz; (c) 2 Hz; (d) 0.5 Hz.

Image of FIG. 2.

Click to view

FIG. 2.

Frequency dependence of the amplitude and phase shift relative to the modulation voltage of the device luminous efficacy.

Image of FIG. 3.

Click to view

FIG. 3.

Voltage amplitude dependence of different complex frequency response electric functions. (a) Modulus of the complex conductivity; (b) modulus of the complex dielectric function; (c) phase-shift of the electric current to the excitation voltage.

Image of FIG. 4.

Click to view

FIG. 4.

Behavior of the d.c. conductivity on the amplitude of the applied voltage. The data were obtained from the low-frequency value of the real part of the complex conductivity (Fig. 3(a) ). The red circle indicates the value for 0.5 V which had to be extrapolated using a Debye fitting.

Loading

Article metrics loading...

/content/aip/journal/apl/101/11/10.1063/1.4752438
2012-09-13
2014-04-18

Abstract

Frequency-dependent electroluminescence and electric current response spectroscopy were applied to polymeric light-emitting electrochemical cells in order to obtain information about the operation mechanism regimes of such devices. Three clearly distinct frequency regimes could be identified: a dielectric regime at high frequencies; an ionic transport regime, characterized by ionic drift and electronic diffusion; and an electrolytic regime, characterized by electronic injection from the electrodes and electrochemical doping of the conjugated polymer. From the analysis of the results, it was possible to evaluate parameters like the diffusion speed of electronic charge carriers in the active layer and the voltage drop necessary for operation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/11/1.4752438.html;jsessionid=anl77kqiqaabj.x-aip-live-02?itemId=/content/aip/journal/apl/101/11/10.1063/1.4752438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electroluminescence and electric current response spectroscopy applied to the characterization of polymer light-emitting electrochemical cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752438
10.1063/1.4752438
SEARCH_EXPAND_ITEM