1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/11/10.1063/1.4752445
1.
1. M. Smith and J. Michl, Chem. Rev. 110, 6891 (2010).
http://dx.doi.org/10.1021/cr1002613
2.
2. J. Lee, P. Jadhav, and M. Baldo, Appl. Phys. Lett. 95, 033301 (2009).
http://dx.doi.org/10.1063/1.3182787
3.
3. P. Jadhav, A. Mohanty, J. Sussman, J. Lee, and M. Baldo, Nano Lett. 11, 1495 (2011).
http://dx.doi.org/10.1021/nl104202j
4.
4. B. Ehrler, M. Wilson, A. Rao, R. Friend, and N. Greenham, Nano Lett. 12, 1053 (2012).
http://dx.doi.org/10.1021/nl204297u
5.
5. H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, and Y. Shirota, Appl. Phys. Lett. 94, 063304 (2009).
http://dx.doi.org/10.1063/1.3079399
6.
6. E. Frankevich, B. Rumyantsev, and V. Lesin, J. Lumin. 11, 91 (1975).
http://dx.doi.org/10.1016/0022-2313(75)90083-6
7.
7. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett. 75, 1682 (1999).
http://dx.doi.org/10.1063/1.124790
8.
8. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).
http://dx.doi.org/10.1063/1.3650472
9.
9. N. Geacintov, M. Pope, and F. Vogel, Phys. Rev. Lett. 22, 593 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.593
10.
10. R. C. Johnson and R. E. Merrifield, Phys. Rev. B 1, 896 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.896
11.
11. P. Jadhav, P. Brown, N. Thompson, B. Wunsch, A. Mohanty, S. Yost, E. Hontz, T. Van Voorhis, M. Bawendi, V. Bulovic, and M. Baldo, “Triplet exciton dissociation in singlet exciton fission photovoltaics,” Adv. Mater. (accepted).
12.
12. X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielweski, and S. R. Marder, Adv. Mater. 23, 268284 (2011).
http://dx.doi.org/10.1002/adma.201001402
13.
13. S. Hammond, J. Meyer, N. Widjonarko, P. Ndione, A. Sigdel, A. Garcia, A. Miedaner, M. Lloyd, A. Kahn, D. Ginley, J. Berry, and D. Olson, J. Mater. Chem. 22, 3249 (2012).
http://dx.doi.org/10.1039/c2jm14911g
14.
14. A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41, 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
15.
15. T. D. Heidel, D. Hochbaum, J. M. Sussman, V. Singh, M. E. Bahlke, I. Hiromi, J. Lee, and M. A. Baldo, J. Appl. Phys. 109, 104502 (2011).
http://dx.doi.org/10.1063/1.3585863
16.
16. C. W. Schlenker, V. S. Barlier, S. W. Chin, M. T. Whited, R. E. McAnally, S. R. Forrest, and M. E. Thompson, Chem. Mater. 23, 4132 (2011).
http://dx.doi.org/10.1021/cm200525h
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752445
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A schematic representation of singlet fission sensitization scheme in an OPV. Radiation is absorbed by the singlet donor, TPTPA, resulting in singlet generation. The singlet diffuses to the interface and energy transfers to the singlet fission sensitizer layer, rubrene. The singlet on the sensitizer then undergoes singlet exciton fission resulting in two triplets. The triplets then dissociate at the donor-acceptor (D-A) interface resulting in two charge carriers from one photon absorbed in the singlet exciton donor. If the rate of singlet fission is comparable to the rate of singlet charge transfer, direct singlet dissociation (dashed arrow) at the D-A interface may occur.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Absorption coefficient (solid line) and normalized PL (dashed line) photoexcited at  = 349 nm of TPTPA (blue) and rubrene (red) thin films. In a co-deposited film of TPTPA(30%):rubrene(70%), TPTPA's fluorescence is fully quenched as singlets are transferred to rubrene (violet). (b) The change in fluorescence under varying applied magnetic fields of photoexcited ( = 500 nm) neat rubrene (green dashed line) showing a typical curve of singlet fission to two triplets. Photoexcitation of TPTPA ( = 365 nm) and rubrene ( = 500 nm) in the ensemble film, the fluorescence increases by 19% (blue solid line) and by 21% (green solid line), respectively, confirming singlet exciton fission. Neat TPTPA, photoexcited at  = 365 nm, shows no magnetic field dependent changes in fluorescence (blue dashed line), demonstrating singlet exciton fission sensitization via exciton energy transfer from TPTPA to rubrene.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Schematic energy-level diagram and thicknesses of the OPV devices built. The energy-levels are from Refs. 8 , 9 , 13–15 . (b) The measured dark (triangles) and light (100 mW cm−2) (dots) current-density-voltage () of the OPV device with rubrene (red) and without rubrene (blue).

Image of FIG. 4.

Click to view

FIG. 4.

The measured EQE versus wavelength curves of the OPV device with rubrene (red dots) and without rubrene (blue dots) showing enhancement in the TPTPA region due to singlet fission sensitization via rubrene.

Image of FIG. 5.

Click to view

FIG. 5.

The change in photocurrent under varying applied magnetic fields at short circuit conditions for OPV with rubrene (solid line) and without rubrene (dashed line) interlayer. For the device with rubrene, the photocurrent decreases by 14% under illumination at  = 365 nm (solid blue line) of the TPTPA layer. The photocurrent decreases by 8.7% under illumination at  = 500 nm (solid green line) of the rubrene and PDI-CN2 layers. The magnitude of change is smaller due to the PDI-CN2 component of photocurrent being magnetic field independent. In contrast, the device without rubrene shows no magnetic field dependent photocurrent at  = 365 nm (dashed blue line) or  = 500 nm (dashed green line), confirming singlet exciton fission sensitization of TPTPA via rubrene in an OPV.

Loading

Article metrics loading...

/content/aip/journal/apl/101/11/10.1063/1.4752445
2012-09-12
2014-04-19

Abstract

We demonstrate bilayer organic photovoltaic cells that incorporate a singlet exciton fission sensitizer layer to increase the external quantum efficiency (EQE). This solar cell architecture is realized by pairing the singlet exciton donor layer tris[4-(5-phenylthiophen-2-yl)phenyl]amine (TPTPA) with the singlet exciton fission layer 5,6,11,12-tetraphenylnaphthacene (rubrene). The presence of the rubrene layer at the donor-acceptor interface allows for a singlet generated in TPTPA to undergo singlet exciton fission with a corresponding doubling in the TPTPA EQE from 12.8% to 27.6%. This scheme de-couples singlet exciton fission from photon absorption, exciton diffusion, and charge transport for very high EQE organic photovoltaic cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/11/1.4752445.html;jsessionid=11jspr641134i.x-aip-live-01?itemId=/content/aip/journal/apl/101/11/10.1063/1.4752445&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752445
10.1063/1.4752445
SEARCH_EXPAND_ITEM