1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Low-energy electron transmission imaging of clusters on free-standing graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/11/10.1063/1.4752717
1.
1. M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, Phys. Rev. Lett. 104(9), 095501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.095501
2.
2. D. Gabor, Nature 161(4098), 777 (1948).
http://dx.doi.org/10.1038/161777a0
3.
3. H. W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14(9), 2168 (1997).
http://dx.doi.org/10.1364/JOSAA.14.002168
4.
4. A. Eisele, B. Voelkel, M. Grunze, and A. Golzhauser, Z. Phys. Chem. 222(5–6), 779 (2008).
http://dx.doi.org/10.1524/zpch.2008.6008
5.
5. A. Golzhauser, B. Volkel, B. Jager, M. Zharnikov, H. J. Kreuzer, and M. Grunze, J. Vac. Sci. Technol. A 16(5), 3025 (1998).
http://dx.doi.org/10.1116/1.581454
6.
6. U. Weierstall, J. C. H. Spence, M. Stevens, and K. H. Downing, Micron 30(4), 335 (1999).
http://dx.doi.org/10.1016/S0968-4328(99)00022-0
7.
7. G. B. Stevens, M. Krüger, T. Latychevskaia, P. Lindner, A. Plückthun, and H. Fink, Eur. Biophys. J. 40, 1197 (2011).
http://dx.doi.org/10.1007/s00249-011-0743-y
8.
8. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Appl. Phys. Lett. 101, 093701 (2012).
http://dx.doi.org/10.1063/1.4748113
9.
9. A. K. Geim and K. S. Novoselov, Nature Mater. 6(3), 183 (2007).
http://dx.doi.org/10.1038/nmat1849
10.
10. R. R. Nair, P. Blake, J. R. Blake, R. Zan, S. Anissimova, U. Bangert, A. P. Golovanov, S. V. Morozov, A. K. Geim, K. S. Novoselov et al., Appl. Phys. Lett. 97(15), 153102 (2010).
http://dx.doi.org/10.1063/1.3492845
11.
11. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3(5), 270 (2008).
http://dx.doi.org/10.1038/nnano.2008.83
12.
12. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321(5887), 385 (2008).
http://dx.doi.org/10.1126/science.1157996
13.
13. J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Nature 454(7202), 319 (2008).
http://dx.doi.org/10.1038/nature07094
14.
14. Z. Lee, K. J. Jeon, A. Dato, R. Erni, T. J. Richardson, M. Frenklach, and V. Radmilovic, Nano Lett. 9(9), 3365 (2009).
http://dx.doi.org/10.1021/nl901664k
15.
15. J. M. Yuk, J. Park, P. Ercius, K. Kim, D. J. Hellebusch, M. F. Crommie, J. Y. Lee, A. Zettl, and A. Paul Alivisatos, Science 336(6077), 61 (2012).
http://dx.doi.org/10.1126/science.1217654
16.
16. J. H. Warner, M. H. Rummeli, A. Bachmatiuk, M. Wilson, and B. Buchner, ACS Nano 4(1), 470 (2010).
http://dx.doi.org/10.1021/nn901371k
17.
17. N. Mohanty, M. Fahrenholtz, A. Nagaraja, D. Boyle, and V. Berry, Nano Lett. 11(3), 1270 (2011).
http://dx.doi.org/10.1021/nl104292k
18.
18. R. S. Pantelic, J. W. Suk, C. W. Magnuson, J. C. Meyer, P. Wachsmuth, U. Kaiser, R. S. Ruoff, and H. Stahlberg, J. Struct. Biol. 174(1), 234 (2011).
http://dx.doi.org/10.1016/j.jsb.2010.10.002
19.
19. J. Y. Mutus, L. Livadaru, J. T. Robinson, R. Urban, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 13, 063011 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063011
20.
20. ACS Material, LLC, Medford, MA, www.acsmaterial.com.
21.
21. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5(9), 6916 (2011).
http://dx.doi.org/10.1021/nn201207c
22.
22. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
23.
23. T. Latychevskaia and H.-W. Fink, Opt. Express 17(13), 10697 (2009).
http://dx.doi.org/10.1364/OE.17.010697
24.
24. M. Kuwabara, D. R. Clarke, and D. A. Smith, Appl. Phys. Lett. 56, 2396 (1990).
http://dx.doi.org/10.1063/1.102906
25.
25. Z. Y. Rong and P. Kuiper, Phys. Rev. B 48(23), 17427 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.17427
26.
26. W.-T. Pong and C. Durkan, J. Phys. D: Appl. Phys. 38(21), R329 (2005).
http://dx.doi.org/10.1088/0022-3727/38/21/R01
27.
27. D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Phys. Rev. B 81(12), 125427 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125427
28.
28. A. H. MacDonald and R. Bistritzer, Nature 474(7352), 453 (2011).
http://dx.doi.org/10.1038/474453a
29.
29. J. B. Jasinski, S. Dumpala, G. U. Sumanasekera, M. K. Sunkara, and P. J. Ouseph, Appl. Phys. Lett. 99, 073104 (2011).
http://dx.doi.org/10.1063/1.3624703
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752717
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematics of the experimental setup. EPS: electron point source, a very sharp tungsten tip. SH: sample holder, graphene covers a hole of about 500 nm in diameter in a metal-coated silicon nitride membrane. The object under study is located on the graphene substrate. A MCP, FOP, and CCD form the detector unit.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Hologram of a graphene sample recorded with low-energy electrons at an energy of 66 eV. (b) The intensity profile along the blue line in (a) shows a discrete change in transmission.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Hologram recorded with 64 eV electrons and (b) its reconstruction. (c) Hologram recorded with 67 eV electrons and (d) its reconstruction. The insets show the magnified areas in the reconstruction marked by red squares, where the small particles are observed. (e) Intensity profile of the red square in (d) from the top left corner to the right bottom corner, showing two central peaks of about 10 nm in width representing the two objects.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Hologram of graphene recorded with 58 eV kinetic energy electrons. (b) Drawing of the superposition of two graphene layers rotated by 2.9° relative to each other creating a Moiré pattern matching (a).

Image of FIG. 5.

Click to view

FIG. 5.

(a) Hologram of graphene recorded with 55 eV kinetic energy electrons. (b) Drawing of the superposition of two graphene layers rotated by 5.5° relative to each other creating a Moiré pattern matching (a). (c) Reconstruction of the hologram obtained at a distance of 440 nm from the electron source.

Loading

Article metrics loading...

/content/aip/journal/apl/101/11/10.1063/1.4752717
2012-09-14
2014-04-19

Abstract

We investigated the utility of free-standing graphene as a transparent sample carrier for imaging nanometer-sized objects by means of low-energy electron holography. The sample preparation for obtaining contamination-free graphene as well as the experimental setup and findings are discussed. For incoming electrons with 66 eV kinetic energy, graphene exhibits 27% opacity per layer. Hence, electron holograms of nanometer-sized objects adsorbed on free-standing graphene can be recorded and numerically reconstructed to reveal the object's shapes and distribution. Furthermore, a Moiré effect has been observed with free-standing graphenemulti-layers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/11/1.4752717.html;jsessionid=1s3b5ehqj3yah.x-aip-live-02?itemId=/content/aip/journal/apl/101/11/10.1063/1.4752717&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Low-energy electron transmission imaging of clusters on free-standing graphene
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752717
10.1063/1.4752717
SEARCH_EXPAND_ITEM