1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Electronic properties of annealed pentacene films in air at various temperatures up to 400 K
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/11/10.1063/1.4752739
1.
1. H. Klauk, Organic Electronics (Wiley-VCH, Weinheim, 2006).
2.
2. M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett. 81, 268 (2002).
http://dx.doi.org/10.1063/1.1491009
3.
3. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).
http://dx.doi.org/10.1147/rd.451.0011
4.
4. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
http://dx.doi.org/10.1063/1.1704874
5.
5. V. Coropceanu, J. Cornil, D. A. da Silva Fiho, Y. Olivier, R. Silbey, and J. Brédas, Chem. Rev. 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
6.
6. E. A. Silinsh, Organic Molecular Crystals (Springer, Berlin, 1980).
7.
7. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).
8.
8. B. C. Huang and Y. J. Lin, Appl. Phys. Lett. 99, 113301 (2011).
http://dx.doi.org/10.1063/1.3636411
9.
9. Y. J. Lin, C. L. Tsai, and B. C. Huang, Appl. Phys. Lett. 97, 203509 (2010).
http://dx.doi.org/10.1063/1.3519981
10.
10. S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, and C. H. Chang, J. Appl. Phys. 95, 2293 (2004).
http://dx.doi.org/10.1063/1.1643189
11.
11. D. Guo, S. Ikeda, K. Saiki, H. Miyazoe, and K. Terashima, J. Appl. Phys. 99, 094502 (2006).
http://dx.doi.org/10.1063/1.2193055
12.
12. D. W. Chou, C. J. Huang, C. M. Su, C. F. Yang, W. R. Chen, and T. H. Meen, Solid-State Electron. 61, 76 (2011).
http://dx.doi.org/10.1016/j.sse.2011.01.003
13.
13. T. Ahn, H. Jung, H. J. Suk, and M. H. Yi, Synth. Met. 159, 1277 (2009).
http://dx.doi.org/10.1016/j.synthmet.2009.02.023
14.
14. T. Ji, S. Jung, and V. K. Varadan, Org. Electron. 9, 895 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.03.005
15.
15. C. S. Lin and Y. J. Lin, J. Non-Cryst. Solids 356, 2820 (2010).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.09.035
16.
16. V. Nádaždy, R. Durný, J. Puigdollers, C. Voz, S. Cheylan, and K. Gmucová, Appl. Phys. Lett. 90, 092112 (2007).
http://dx.doi.org/10.1063/1.2710203
17.
17. H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang, and S. W. Chu, Adv. Funct. Mater. 18, 285 (2008).
http://dx.doi.org/10.1002/adfm.200700912
18.
18. G. Gu, M. G. Kane, and S. C. Mau, J. Appl. Phys. 101, 014504 (2007).
http://dx.doi.org/10.1063/1.2403241
19.
19. A. Vollmer, O. D. Jurchescu, I. Arfaoui, I. Salzmann, T. T. M. Palstra, P. Rudolf, J. Niemax, J. Pfiaum, J. P. Rabe, and N. Koch, Eur. Phys. J. E 17, 339 (2005).
http://dx.doi.org/10.1140/epje/i2005-10012-0
20.
20. T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90002-8
21.
21. H. S. Seo, Y. S. Jang, Y. Zhang, P. S. Abthagir, and J. H. Choi, Org. Electron. 9, 432 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.01.008
22.
22. Y. J. Lin, C. L. Tsai, Y. C. Su, and D. S. Liu, Appl. Phys. Lett. 100, 253302 (2012).
http://dx.doi.org/10.1063/1.4730391
23.
23. Y. J. Lin, H. Y. Tsao, and D. S. Liu, Appl. Phys. Lett. 101, 013302 (2012).
http://dx.doi.org/10.1063/1.4733293
24.
24. Y. J. Lin, J. J. Zeng, and C. L. Tsai, Appl. Phys. Lett. 101, 053305 (2012).
http://dx.doi.org/10.1063/1.4740073
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752739
Loading
/content/aip/journal/apl/101/11/10.1063/1.4752739
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/11/10.1063/1.4752739
2012-09-14
2014-11-24

Abstract

This study examined the electronic properties of annealed pentacene films in air at various temperatures up to 400 K for 1 min. The carrier mobility in pentacene samples exhibits unexpectedly strong temperature dependence, implying the domination of tunneling (hopping) at low (high) temperatures. Upon annealing temperature, the molecule structure is not affected. The room-temperature mobility was drastically increased from 2.42 to 4.73 cm2/V-s by thermal annealing at 350 K. Hall-effect analysis by using the polaron theory revealed that the enhanced mobility by proper annealing is due to the increased spacing between molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/11/1.4752739.html;jsessionid=1hum4aglk0jos.x-aip-live-06?itemId=/content/aip/journal/apl/101/11/10.1063/1.4752739&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electronic properties of annealed pentacene films in air at various temperatures up to 400 K
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/11/10.1063/1.4752739
10.1063/1.4752739
SEARCH_EXPAND_ITEM