1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/12/10.1063/1.4753816
1.
1. M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 212503 (2010).
http://dx.doi.org/10.1063/1.3429592
2.
2. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
3.
3. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nature Mater. 3, 862 (2004).
http://dx.doi.org/10.1038/nmat1256
4.
4. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suziki, and K. Ando, Nature Mater. 3, 868 (2004).
http://dx.doi.org/10.1038/nmat1257
5.
5. S. Matsunaga, M. Natsui, S. Ikeda, K. Miura, T. Endoh, H. Ohno, and T. Hanyu, Jpn. J. Appl. Phys. 50, 063004 (2011).
http://dx.doi.org/10.1143/JJAP.50.063004
6.
6. S. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, H. Hasegawa, T. Endoh, H. Ohno, and T. Hanyu, Appl. Phys. Express 2, 023004 (2009).
http://dx.doi.org/10.1143/APEX.2.023004
7.
7. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London) 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
8.
8. D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
http://dx.doi.org/10.1126/science.1086608
9.
9. D. Chiba, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 162505 (2006).
http://dx.doi.org/10.1063/1.2362971
10.
10. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature (London) 455, 515 (2008).
http://dx.doi.org/10.1038/nature07318
11.
11. D. Chiba, Y. Nakatani, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 192506 (2010).
http://dx.doi.org/10.1063/1.3428959
12.
12. T. Lotternoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature (London) 430, 541 (2004).
http://dx.doi.org/10.1038/nature02728
13.
13. M. Saito, K. Ishikawa, S. Konno, K. Taniguchi, and T. Arima, Nature Mater. 8, 634 (2009).
http://dx.doi.org/10.1038/nmat2492
14.
14. M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
http://dx.doi.org/10.1126/science.1136629
15.
15. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and T. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
http://dx.doi.org/10.1038/nnano.2008.406
16.
16. D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Nature Mater. 10, 853 (2011).
http://dx.doi.org/10.1038/nmat3130
17.
17. Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Nature Mater. 11, 39 (2012).
http://dx.doi.org/10.1038/nmat3172
18.
18. W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, Nature Mater. 11, 64 (2012).
http://dx.doi.org/10.1038/nmat3171
19.
19. C.-G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 101, 137201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.137201
20.
20. M. Tsujikawa and T. Oda, Phys. Rev. Lett. 102, 247203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.247203
21.
21. K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. Lett. 102, 187201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.187201
22.
22. H. Sato, M. Yamanouchi, K. Miura, S. Ikeda, R. Koizumi, F. Matsukura, and H. Ohno, IEEE Magn. Lett. 3, 3000204 (2012).
http://dx.doi.org/10.1109/LMAG.2012.2190722
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/12/10.1063/1.4753816
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of magnetic tunnel junction device. Diameter of junction is 70 nm. (b) Minor resistance versus magnetic field curves as a function of dc bias voltage. The magnetic field is applied normal to device surface (θ H = 0°).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Schematic of experimental setup. (b) Minor resistance versus magnetic field curves as a function of dc bias voltage. The magnetic field is applied along θ H = 21°. (c) Resistance measured after the application of voltage pulses of 0.9 V with 1.8 ns duration. Arrows indicate the time at which voltage pulse is applied. The applied magnetic field is 23 mT along θ H = 21° and dc bias for measurements is 10 mV.

Image of FIG. 3.

Click to view

FIG. 3.

Switching probabilities by the application of voltage pulses of 0.9 V as functions of pulse duration and magnitude of an external magnetic field along θ H = 21°. (a) From parallel to antiparallel (P 10) (b) from antiparallel to parallel (P 01), and (c) their product (P 10 P 01), which corresponds to the probability of successive back-and-forth switching.

Loading

Article metrics loading...

/content/aip/journal/apl/101/12/10.1063/1.4753816
2012-09-18
2014-04-18

Abstract

The electric field-induced ∼180° magnetization reversal is realized for a sputtered CoFeB/MgO-based magnetic tunnel junction with perpendicular magnetic easy axis in a static external magnetic field. Application of bias voltage with nanoseconds duration results in a temporal change of magnetic easy axis in the free layer CoFeB to in-plane, which induces precessional motion of magnetization in the free layer. The magnetization reversal takes place when the bias voltage pulse duration is adjusted to a half period of the precession. We show that the back and forth magnetization reversal can be observed by using successive application of half-period voltage pulses.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/12/1.4753816.html;jsessionid=agnigfde9p6g.x-aip-live-03?itemId=/content/aip/journal/apl/101/12/10.1063/1.4753816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/12/10.1063/1.4753816
10.1063/1.4753816
SEARCH_EXPAND_ITEM