1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/12/10.1063/1.4753816
1.
1. M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 212503 (2010).
http://dx.doi.org/10.1063/1.3429592
2.
2. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
3.
3. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nature Mater. 3, 862 (2004).
http://dx.doi.org/10.1038/nmat1256
4.
4. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suziki, and K. Ando, Nature Mater. 3, 868 (2004).
http://dx.doi.org/10.1038/nmat1257
5.
5. S. Matsunaga, M. Natsui, S. Ikeda, K. Miura, T. Endoh, H. Ohno, and T. Hanyu, Jpn. J. Appl. Phys. 50, 063004 (2011).
http://dx.doi.org/10.1143/JJAP.50.063004
6.
6. S. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, H. Hasegawa, T. Endoh, H. Ohno, and T. Hanyu, Appl. Phys. Express 2, 023004 (2009).
http://dx.doi.org/10.1143/APEX.2.023004
7.
7. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London) 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
8.
8. D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
http://dx.doi.org/10.1126/science.1086608
9.
9. D. Chiba, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 162505 (2006).
http://dx.doi.org/10.1063/1.2362971
10.
10. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature (London) 455, 515 (2008).
http://dx.doi.org/10.1038/nature07318
11.
11. D. Chiba, Y. Nakatani, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 192506 (2010).
http://dx.doi.org/10.1063/1.3428959
12.
12. T. Lotternoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature (London) 430, 541 (2004).
http://dx.doi.org/10.1038/nature02728
13.
13. M. Saito, K. Ishikawa, S. Konno, K. Taniguchi, and T. Arima, Nature Mater. 8, 634 (2009).
http://dx.doi.org/10.1038/nmat2492
14.
14. M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
http://dx.doi.org/10.1126/science.1136629
15.
15. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and T. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
http://dx.doi.org/10.1038/nnano.2008.406
16.
16. D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Nature Mater. 10, 853 (2011).
http://dx.doi.org/10.1038/nmat3130
17.
17. Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Nature Mater. 11, 39 (2012).
http://dx.doi.org/10.1038/nmat3172
18.
18. W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, Nature Mater. 11, 64 (2012).
http://dx.doi.org/10.1038/nmat3171
19.
19. C.-G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 101, 137201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.137201
20.
20. M. Tsujikawa and T. Oda, Phys. Rev. Lett. 102, 247203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.247203
21.
21. K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. Lett. 102, 187201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.187201
22.
22. H. Sato, M. Yamanouchi, K. Miura, S. Ikeda, R. Koizumi, F. Matsukura, and H. Ohno, IEEE Magn. Lett. 3, 3000204 (2012).
http://dx.doi.org/10.1109/LMAG.2012.2190722
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/12/10.1063/1.4753816
Loading
/content/aip/journal/apl/101/12/10.1063/1.4753816
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/12/10.1063/1.4753816
2012-09-18
2014-07-13

Abstract

The electric field-induced ∼180° magnetization reversal is realized for a sputtered CoFeB/MgO-based magnetic tunnel junction with perpendicular magnetic easy axis in a static external magnetic field. Application of bias voltage with nanoseconds duration results in a temporal change of magnetic easy axis in the free layer CoFeB to in-plane, which induces precessional motion of magnetization in the free layer. The magnetization reversal takes place when the bias voltage pulse duration is adjusted to a half period of the precession. We show that the back and forth magnetization reversal can be observed by using successive application of half-period voltage pulses.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/12/1.4753816.html;jsessionid=c9g882h5kscga.x-aip-live-03?itemId=/content/aip/journal/apl/101/12/10.1063/1.4753816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/12/10.1063/1.4753816
10.1063/1.4753816
SEARCH_EXPAND_ITEM