1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Controllable in vivo hyperthermia effect induced by pulsed high intensity focused ultrasound with low duty cycles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/12/10.1063/1.4754113
1.
1. J. E. Kennedy, Nat. Rev. Cancer 5(4), 321 (2005).
http://dx.doi.org/10.1038/nrc1591
2.
2. L. A. Crum, M. Bailey, J. H. Hwang, V. Khokhlova, and O. Sapozhnikov, Phys. Procedia 3(1), 25 (2010).
http://dx.doi.org/10.1016/j.phpro.2010.01.005
3.
3. J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, Ultrasonics 42, 931 (2004).
http://dx.doi.org/10.1016/j.ultras.2004.01.089
4.
4. C. J. Diederich, Int. J. Hyperthermia 21(8), 745 (2005).
http://dx.doi.org/10.1080/02656730500271692
5.
5. J. Hwang, S. Vaezy, R. Martin, M. Cho, M. Noble, L. Crum, M. Kimmey, Gastrointestinal. Endoscopy, 58(1), 111 (2003).
http://dx.doi.org/10.1067/mge.2003.322
6.
6. H. G. Zhang, K. Mehta, P. Cohen, and C. Guha, Cancer Lett. 271(2), 191 (2008).
http://dx.doi.org/10.1016/j.canlet.2008.05.026
7.
7. S. Wang, V. Zderic, and V. Frenkel, Future Oncol. 6(9), 1497 (2010).
http://dx.doi.org/10.2217/fon.10.101
8.
8. E. L. Jones, L. R. Prosnitz, M. W. Dewhirst, P. K. Marcom, P. H. Hardenbergh, L. B. Marks, D. M. Brizel, and Z. Vujaskovic, Clin. Cancer Res. 10(13), 4287 (2004).
http://dx.doi.org/10.1158/1078-0432.CCR-04-0133
9.
9. C. W. Song, H. J. Park, C. K. Lee, and R. Griffin, Int. J. Hyperthermia 21(8), 761 (2005).
http://dx.doi.org/10.1080/02656730500204487
10.
10. E. Guilhon, P. Voisin, J. de Zwart, B. Quesson, R. Salomir, C. Maurange, V. Bouchaud, P. Smirnov, H. de Verneuil, A. Vekris, P. Canioni, and C. Moonen, J. Gene Med. 5(4), 333 (2003).
http://dx.doi.org/10.1002/jgm.345
11.
11. S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. Libutti, K. Li, and B. Wood, Clin. Cancer Res. 13(9), 2722 (2007).
http://dx.doi.org/10.1158/1078-0432.CCR-06-2443
12.
12. E. A. Filonenko and V. A. Khohlova, Acoust. Phys. 47, 468 (2001).
http://dx.doi.org/10.1134/1.1385422
13.
13. J. Huang, R. Holt, R. Cleveland, and R. Roy, J. Acoust. Soc. Am. 116, 2451 (2004).
http://dx.doi.org/10.1121/1.1787124
14.
14. H. Pennes, J. Appl. Phys. 1, 93 (1948).
15.
15. S. Vaezy, M. Andrew, P. Kaczkowski, and L. Crum, Annu. Rev. Biomed. Eng. 3, 375 (2001).
http://dx.doi.org/10.1146/annurev.bioeng.3.1.375
16.
16. K. J. Henle and L. A. Dethlefsen, Annu. N.Y. Acad. Sci. 335, 234 (1980).
http://dx.doi.org/10.1111/j.1749-6632.1980.tb50752.x
17.
17. S. Sapareto, L. Hopwood, W. Dewey, M. Raju, and J. Gray, Cancer Res. 38, 393 (1978).
18.
18. D. Bate and W. J. Mackillop, Br. J. Cancer 62, 183 (1990).
http://dx.doi.org/10.1038/bjc.1990.257
19.
19. G. Kong, R. D. Braun, and M. W. Dewhirst, Cancer Res. 61, 3027 (2001).
20.
20. M. Solovchuk, T. Sheu, W. Lin, I. Kuo, and M. Thiriet, Int. J. Heat Mass Transfer 55, 1261 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.023
21.
21. See supplementary material at http://dx.doi.org/10.1063/1.4754113 for “Ultrasound Exposure System” and “Animal Anesthesia”. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/12/10.1063/1.4754113
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The schematic diagram of the experimental system. The enlarged inset demonstrates the placement of thermocouple. The rabbit auricular vein is close to the surface of the ear with a distance of ∼200–400 μm. The tip of the thermocouple (marked as the black dot) is placed within the lumen of the auricular vein against the distal wall of the vessel. A water-filled cone was used to efficiently couple acoustic energy to the vein. The histology for a normal rabbit auricular vein shown in the inset was obtained by H&E stain.

Image of FIG. 2.

Click to view

FIG. 2.

Geometrical illustration of the computation model.

Image of FIG. 3.

Click to view

FIG. 3.

Experimentally measured and numerically simulated temperature elevations in the rabbit ear vein exposed to HIFU pulses. The temperature data were taken ∼700 μm from the center of the HIFU focus at the distal side of the vein. The HIFU transducer worked at fixed 1.17-MHz driving frequency, 1-Hz PRF, and 5300 -W/cm2 ISPPA, with DCs varied by changing pulse lengths. (a) Temporal evolution of the temperature inside the rabbit auricular vein; (b) the change in temperature after 60-s pHIFU exposures plotted as the function of pHIFU DCs.

Image of FIG. 4.

Click to view

FIG. 4.

Experimentally measured or numerically estimated average temperature change after 60-s pHIFU exposures at varied PRF/pulse, with DC keeping constant.

Image of FIG. 5.

Click to view

FIG. 5.

The temperature elevations in a 3-mm thick tissue embedded with a blood vessel (1.5-mm diameter) sonicated with pHIFU. The profile of temperature enhancement in the (a) central transverse section (Y-Z plane, x = 0) and (b) central longitudinal section (X-Z plane, y = 0) after 60-s exposure at 1-Hz PRF and 4.3% DC. The horizontal solid and dash lines represent the boundaries of tissue and vein, respectively. The HIFU focus exactly located at the center of the vein (viz., x = 0 mm, z = 50.25 mm). The DC-dependence (c) and PRF-dependence (d) of the temperature elevations at several points along the central axis of the HIFU transducer (vertical dashed dotted line in A and B) are numerically studied. The positions of points a, b, c, d, e, and f sit at z = 49.0, 49.5, 50.2, 50.9, 51.5, and 52 mm, respectively. Point d denotes the position of the thermocouple.

Loading

Article metrics loading...

/content/aip/journal/apl/101/12/10.1063/1.4754113
2012-09-18
2014-04-19

Abstract

High intensity focused ultrasound (HIFU)-induced hyperthermia is a promising tool for cancer therapy. Three-dimensional nonlinear acoustic-bioheat transfer-blood flow-coupling model simulations and in vivothermocouplemeasurements were performed to study hyperthermia effects in rabbit auricular vein exposed to pulsed HIFU (pHIFU) at varied duty cycles (DCs). pHIFU-induced temperature elevations are shown to increase with increasing DC. A critical DC of 6.9% is estimated for temperature at distal vessel wall exceeding 44 °C, although different tissue depths and inclusions could affect the DC threshold. The results demonstrate clinic potentials of achieving controllable hyperthermia by adjusting pHIFU DCs, while minimizing perivascular thermal injury.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/12/1.4754113.html;jsessionid=1dg5lech4urrc.x-aip-live-01?itemId=/content/aip/journal/apl/101/12/10.1063/1.4754113&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Controllable in vivo hyperthermia effect induced by pulsed high intensity focused ultrasound with low duty cycles
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/12/10.1063/1.4754113
10.1063/1.4754113
SEARCH_EXPAND_ITEM