1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/13/10.1063/1.4754533
1.
1. D. Fuhrmann, U. Rossow, C. Netzel, H. Bremers, G. Ade, P. Hinze, and A. Hangleiter, Phys. Stat. Solidi C 3(6), 19661969 (2006).
http://dx.doi.org/10.1002/pssc.200565374
2.
2. D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, Appl. Phys. Lett. 88, 071105 (2006).
http://dx.doi.org/10.1063/1.2173619
3.
3. S. Schulz and E. P. O'Reilly, Phys. Rev. B 82, 033411 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.033411
4.
4. M. Petroff, A. Lorke, and A. Imomoglu, Phys. Today 54(5), 46 (2001).
http://dx.doi.org/10.1063/1.1381102
5.
5. M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, Appl. Phys. Lett. 98, 221104 (2011).
http://dx.doi.org/10.1063/1.3596436
6.
6. T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, Appl. Phys. Lett. 85, 1946 (2004).
http://dx.doi.org/10.1063/1.1790599
7.
7. J. W. Robinson, J. H. Rice, A. Jarjour, J. D. Smith, R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, and Y. Arakawa, Appl. Phys. Lett. 83, 2674 (2003).
http://dx.doi.org/10.1063/1.1614831
8.
8. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
http://dx.doi.org/10.1063/1.122164
9.
9. T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 74, 3128 (1999).
http://dx.doi.org/10.1063/1.124084
10.
10. Y. Masumoto and T. Takagahara, Semiconductor Quantum Dot (Springer, Berlin, 2002), p174.
11.
11. R. E. Rudd, G. A. D. Briggs, A. P. Sutton, G. Medeiros-Ribeiro, and R. S. Williams, Phys. Rev. Lett. 90, 146101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.146101
12.
12. G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, Appl. Phys. Lett. 79, 2157 (2001).
http://dx.doi.org/10.1063/1.1406553
13.
13. S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, Phys. Rev. B 66, 125309 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.125309
14.
14. T. D. Moustakas, T. Xu, C. Thomidis, A. Y. Nikiforov, L. Zhou, and D. J. Smith, Phys. Stat. Solidi A 205(11), 25602565 (2008).
http://dx.doi.org/10.1002/pssa.200880222
15.
15. K. Pötschke, L. Müller-Kirsch, R. Heitz, R. L. Sellin, U. W. Pohl, D. Bimberg, N. Zakharov, and P. Werner, Physica E (Amsterdam) 21, 606 (2004).
http://dx.doi.org/10.1016/j.physe.2003.11.089
16.
16. M. Colocci, F. Bogani, L. Carraresi, R. Mattolini, A. Bosacchi, S. Franchi, P. Frigeri, M. Rosa-Clot, and S. Taddei, Appl. Phys. Lett. 70, 3140 (1997).
http://dx.doi.org/10.1063/1.119114
17.
17. U. W. Pohl, K. Pötschke, A. Schliwa, F. Guffarth, D. Bimberg, N. D. Zakharov, P. Werner, M. B. Lifshits, V. A. Shchukin, and D. E. Jesson, Phys. Rev. B 72, 245332 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.245332
18.
18. Z. Y. Xu, Z. D. Lu, Z. L. Yuan, X. P. Yang, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, Superlattices Microstruct. 23(2), P381 (1998).
http://dx.doi.org/10.1006/spmi.1996.0196
19.
19. Q. Li, S. J. Xu, M. H. Xie, and S. Y. Tong, Europhys. Lett. 71(6), 994 (2005).
http://dx.doi.org/10.1209/epl/i2005-10170-7
20.
20. R. N. Hall, Phys. Rev. 87, 387 (1952).
http://dx.doi.org/10.1103/PhysRev.87.387
21.
21. W. Schockley and W. T. Read, Phys. Rev. 87, 835 (1952).
http://dx.doi.org/10.1103/PhysRev.87.835
22.
22. S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, and S. Franchi, Phys. Rev. B 60, 8276 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8276
23.
23. P. J. Dean, Phys. Rev. 157, 655667 (1967).
http://dx.doi.org/10.1103/PhysRev.157.655
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/13/10.1063/1.4754533
Loading
/content/aip/journal/apl/101/13/10.1063/1.4754533
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/13/10.1063/1.4754533
2012-09-24
2014-09-19

Abstract

Self-assembledInGaNquantum dots(QDs) were fabricated by metal-organic chemical vapor deposition. Abnormal temperature dependence of photoluminescence(PL) was observed. The integrated PL intensity of QDs sample shows a dramatic increase in a temperature range from 160 K to 215 K and reaches the maximum value at 215 K instead of 10 K as usual. To interpret this phenomenon, a theoretic model of temperature induced carrier redistribution mechanism is designed using rate equation, which fits closely with the experimental result. It is concluded that carriers’ redistribution from shallow QDs or wetting layer to deep QDs gives rise to the unique behavior for InGaNQDs structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/13/1.4754533.html;jsessionid=aqm87stqdgnod.x-aip-live-06?itemId=/content/aip/journal/apl/101/13/10.1063/1.4754533&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/13/10.1063/1.4754533
10.1063/1.4754533
SEARCH_EXPAND_ITEM