1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Broadband super-Planckian thermal emission from hyperbolic metamaterials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/13/10.1063/1.4754616
1.
1. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen et al., Energy Environ. Sci. 2, 559588 (2009).
http://dx.doi.org/10.1039/b821698c
2.
2. Z. M. Zhang and I. Ebrary, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).
3.
3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 6164 (2002).
http://dx.doi.org/10.1038/416061a
4.
4. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, Phys. Rev. Lett. 85, 15481551 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1548
5.
5. M. Florescu, K. Busch, and J. P. Dowling, Phys. Rev. B 75, 201101 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.201101
6.
6. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, Nature 444, 740743 (2006).
http://dx.doi.org/10.1038/nature05265
7.
7. A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.224301
8.
8. S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 29092913 (2009).
http://dx.doi.org/10.1021/nl901208v
9.
9. C. J. Schuler, C. Wolff, K. Busch, and M. Florescu, Appl. Phys. Lett 95, 241103 (2009).
http://dx.doi.org/10.1063/1.3275578
10.
10. T. Trupke, P. Würfel, and M. A. Green, Appl. Phys. Lett 84, 1997 (2004).
http://dx.doi.org/10.1063/1.1667269
11.
11. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, Appl. Phys. Lett 100, 181105 (2012).
http://dx.doi.org/10.1063/1.4710548
12.
12. I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett. 105, 67402 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.067402
13.
13. E. E. Narimanov and I. I. Smolyaninov, e-print arXiv:1109.5444 (2011).
14.
14. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, Appl. Phys. B 100, 215218 (2010).
http://dx.doi.org/10.1007/s00340-010-4096-5
15.
15. M. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, Opt. Lett. 35, 18631865 (2010).
http://dx.doi.org/10.1364/OL.35.001863
16.
16. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, J. Opt. 14, 063001 (2012).
http://dx.doi.org/10.1088/2040-8978/14/6/063001
17.
17. A. Narayanaswamy and G. Chen, Appl. Phys. Lett. 82, 3544 (2003).
http://dx.doi.org/10.1063/1.1575936
18.
18. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336, 205 (2012).
http://dx.doi.org/10.1126/science.1219171
19.
19. D. Korobkin, B. Neuner III, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, Opt. Express 18, 2273422746 (2010).
http://dx.doi.org/10.1364/OE.18.022734
20.
20. J. J. Greffet and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 15, 27352744 (1998).
http://dx.doi.org/10.1364/JOSAA.15.002735
21.
21. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3 (Springer, Berlin, 1989).
22.
22. S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, Opt. Express 19, A1088A1103 (2011).
http://dx.doi.org/10.1364/OE.19.0A1088
23.
23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
24.
24. K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Phys. Rev. B 68, 245405 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.245405
25.
25. L. Tsang, E. Njoku, and J. A. Kong, J. Appl. Phys. 46, 51275133 (1975).
http://dx.doi.org/10.1063/1.321571
26.
26. G. Ford and W. Weber, Phys. Rep. 113, 195287 (1984).
http://dx.doi.org/10.1016/0370-1573(84)90098-X
27.
27. A. C. Jones and M. B. Raschke, Nano Lett. 12, 1475 (2012).
http://dx.doi.org/10.1021/nl204201g
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4754616 for equations. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/13/10.1063/1.4754616
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) (i) Multilayer hyperbolic metamaterial (HMM) with unit cell size “a” consisting of alternating layers of silicon carbide and silicon dioxide (ii) Ellipsoidal isofrequency surface for effective anisotropic dielectric (, ) (iii) type I HMM with only one negative component in the dielectric tensor (, ) (iv) type II HMM with two negative components (, ) The arrows denote the allowed wavevectors in the medium which can take large values in the HMM. (b) Optical phase diagram of SiC/SiO2 metamaterial showing the different optical isofrequency surfaces achieved in different regions depending on the frequency of operation and fill fraction of metal. The dark blue area denotes an anisotropic effective metal where propagating waves are not allowed.

Image of FIG. 2.

Click to view

FIG. 2.

Super-Planckian thermal emission in the near field of the HMM (normalized to the black body radiation into the upper half-space) calculated analytically. The characteristic dispersion of high-k states and optical phases of the HMM are evident. Note that the thermal emission is enhanced in a broadband range due to the high-k states present in the type I and type II HMM region but not in the effective dielectric region. The dark narrow band of high thermal emission occurs in the effective metal region due to a surface phonon polariton resonance.

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of the analytical result in the near field with an exact numerical solution for an effective medium HMM with metallic fill fractions (a) 0.25 and (b) 0.5. The thermal emission is normalized to the black body emission to the upper half-space with insets showing the effective medium dielectric parameters of the metamaterial. Note the excellent agreement between the analytical expression and full calculation. Furthermore, the broadband super-Planckian thermal emission shows the expected topological transitions and closely follows the optical phases as expected. The two peaks in the exact calculation (b) correspond to the transverse optical phonon resonance () and the singular meeting point of the optical phases ().

Image of FIG. 4.

Click to view

FIG. 4.

Comparison of the WLDOSs which governs thermal emission (a) EMT prediction (b) Practical multilayer realization for f = 0.25 and z = 100 nm. The structure consists of 10 layers of SiC/SiO2, 50 nm/150 nm achieving a net thickness of 1 . The effect of the topological transitions as well as the presence of high-k modes are clearly evident in the multilayer practical realization which takes into account all non-idealities due to dispersion, losses, finite unit cell size and finite sample size. The bright bands denote the enhanced LDOS due to high-k modes in the HMM.

Image of FIG. 5.

Click to view

FIG. 5.

Broadband LDOS enhancement for f = 0.5 (a) EMT prediction (b) practical multilayer structure with 10 layers of SiC/SiO2, 100 nm/100 nm achieving a net thickness of 1 . An upper cut off to the maximum wavevector exists in the multilayer realization but the net LDOS enhancement (and hence the super-Planckian thermal emission) at a distance of z = 100 nm is over two orders of magnitude more than vacuum (see Fig. 3(b)).

Loading

Article metrics loading...

/content/aip/journal/apl/101/13/10.1063/1.4754616
2012-09-24
2014-04-21

Abstract

We develop the fluctuational electrodynamics of metamaterials with hyperbolic dispersion and show the existence of broadband thermal emission beyond the black body limit in the near field. This arises due to the thermal excitation of unique bulk metamaterial modes, which do not occur in conventional media. We consider a practical realization of the hyperbolic metamaterial and estimate that the effect will be observable using the characteristic dispersion (topological transitions) of the metamaterial states. Our work paves the way for engineering the near-field thermal emission using metamaterials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/13/1.4754616.html;jsessionid=64gf3419upice.x-aip-live-02?itemId=/content/aip/journal/apl/101/13/10.1063/1.4754616&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Broadband super-Planckian thermal emission from hyperbolic metamaterials
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/13/10.1063/1.4754616
10.1063/1.4754616
SEARCH_EXPAND_ITEM