1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Broadband super-Planckian thermal emission from hyperbolic metamaterials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/13/10.1063/1.4754616
1.
1. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen et al., Energy Environ. Sci. 2, 559588 (2009).
http://dx.doi.org/10.1039/b821698c
2.
2. Z. M. Zhang and I. Ebrary, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).
3.
3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 6164 (2002).
http://dx.doi.org/10.1038/416061a
4.
4. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, Phys. Rev. Lett. 85, 15481551 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1548
5.
5. M. Florescu, K. Busch, and J. P. Dowling, Phys. Rev. B 75, 201101 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.201101
6.
6. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, Nature 444, 740743 (2006).
http://dx.doi.org/10.1038/nature05265
7.
7. A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.224301
8.
8. S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 29092913 (2009).
http://dx.doi.org/10.1021/nl901208v
9.
9. C. J. Schuler, C. Wolff, K. Busch, and M. Florescu, Appl. Phys. Lett 95, 241103 (2009).
http://dx.doi.org/10.1063/1.3275578
10.
10. T. Trupke, P. Würfel, and M. A. Green, Appl. Phys. Lett 84, 1997 (2004).
http://dx.doi.org/10.1063/1.1667269
11.
11. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, Appl. Phys. Lett 100, 181105 (2012).
http://dx.doi.org/10.1063/1.4710548
12.
12. I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett. 105, 67402 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.067402
13.
13. E. E. Narimanov and I. I. Smolyaninov, e-print arXiv:1109.5444 (2011).
14.
14. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, Appl. Phys. B 100, 215218 (2010).
http://dx.doi.org/10.1007/s00340-010-4096-5
15.
15. M. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, Opt. Lett. 35, 18631865 (2010).
http://dx.doi.org/10.1364/OL.35.001863
16.
16. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, J. Opt. 14, 063001 (2012).
http://dx.doi.org/10.1088/2040-8978/14/6/063001
17.
17. A. Narayanaswamy and G. Chen, Appl. Phys. Lett. 82, 3544 (2003).
http://dx.doi.org/10.1063/1.1575936
18.
18. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336, 205 (2012).
http://dx.doi.org/10.1126/science.1219171
19.
19. D. Korobkin, B. Neuner III, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, Opt. Express 18, 2273422746 (2010).
http://dx.doi.org/10.1364/OE.18.022734
20.
20. J. J. Greffet and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 15, 27352744 (1998).
http://dx.doi.org/10.1364/JOSAA.15.002735
21.
21. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3 (Springer, Berlin, 1989).
22.
22. S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, Opt. Express 19, A1088A1103 (2011).
http://dx.doi.org/10.1364/OE.19.0A1088
23.
23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
24.
24. K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Phys. Rev. B 68, 245405 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.245405
25.
25. L. Tsang, E. Njoku, and J. A. Kong, J. Appl. Phys. 46, 51275133 (1975).
http://dx.doi.org/10.1063/1.321571
26.
26. G. Ford and W. Weber, Phys. Rep. 113, 195287 (1984).
http://dx.doi.org/10.1016/0370-1573(84)90098-X
27.
27. A. C. Jones and M. B. Raschke, Nano Lett. 12, 1475 (2012).
http://dx.doi.org/10.1021/nl204201g
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4754616 for equations. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/13/10.1063/1.4754616
Loading
/content/aip/journal/apl/101/13/10.1063/1.4754616
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/13/10.1063/1.4754616
2012-09-24
2014-07-29

Abstract

We develop the fluctuational electrodynamics of metamaterials with hyperbolic dispersion and show the existence of broadband thermal emission beyond the black body limit in the near field. This arises due to the thermal excitation of unique bulk metamaterial modes, which do not occur in conventional media. We consider a practical realization of the hyperbolic metamaterial and estimate that the effect will be observable using the characteristic dispersion (topological transitions) of the metamaterial states. Our work paves the way for engineering the near-field thermal emission using metamaterials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/13/1.4754616.html;jsessionid=wmspp8olo9ev.x-aip-live-06?itemId=/content/aip/journal/apl/101/13/10.1063/1.4754616&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Broadband super-Planckian thermal emission from hyperbolic metamaterials
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/13/10.1063/1.4754616
10.1063/1.4754616
SEARCH_EXPAND_ITEM