1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Enhanced photocurrent and open-circuit voltage in a 3-layer cascade organic solar cell
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/14/10.1063/1.4757575
1.
1. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
3.
3. G. Dennler, H.-J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006).
http://dx.doi.org/10.1063/1.2336593
4.
4. D. Cheyns, B. P. Rand, and P. Heremans, Appl. Phys. Lett. 97, 033301 (2010).
http://dx.doi.org/10.1063/1.3464169
5.
5. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
6.
6. H. Gommans, T. Aernouts, B. Verreet, P. Heremans, A. Medina, C. G. Claessens, and T. Torres, Adv. Funct. Mater. 19, 3435 (2009).
http://dx.doi.org/10.1002/adfm.200900524
7.
7. B. Verreet, B. P. Rand, D. Cheyns, A. Hadipour, T. Aernouts, P. Heremans, A. Medina, C. G. Claessens, and T. Torres, Adv. Energy Mater. 1, 565 (2011).
http://dx.doi.org/10.1002/aenm.201100137
8.
8. P. Sullivan, A. Duraud, I. Hancox, N. Beaumont, G. Mirri, J. H. R. Tucker, R. A. Hatton, M. Shipman, and T. S. Jones, Adv. Energy Mater. 1, 352 (2011).
http://dx.doi.org/10.1002/aenm.201100036
9.
9. F. Yang, R. R. Lunt, and S. R. Forrest, Appl. Phys. Lett. 92, 053310 (2008).
http://dx.doi.org/10.1063/1.2839408
10.
10. J. Huang, J. Yu, W. Wang, and Y. Jiang, Appl. Phys. Lett. 98, 023301 (2011).
http://dx.doi.org/10.1063/1.3535603
11.
11. Y. Kim, M. Shin, H. Kim, Y. Ha, and C.-S. Ha, J. Phys. D: Appl. Phys. 41, 225101 (2008).
http://dx.doi.org/10.1088/0022-3727/41/22/225101
12.
12. J.-H. Huang, M. Velusamy, K.-C. Ho, J.-T. Lin, and C.-W. Chu, J. Mater. Chem. 20, 2820 (2010).
http://dx.doi.org/10.1039/b918362k
13.
13. M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, and Y. Tai, Sol. Energy Mater. Sol. Cells 95, 2621 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.05.013
14.
14. T. D. Heidel, D. Hochbaum, J. Sussman, V. Singh, M. E. Bahlke, I. Hiromi, J. Lee, and M. A. Baldo, J. Appl. Phys. 109, 104502 (2011).
http://dx.doi.org/10.1063/1.3585863
15.
15. M. Ichikawa, E. Suto, H.-G. Jeon, and Y. Taniguchi, Org. Electron. 11, 700 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.12.023
16.
16. C. W. Schlenker, V. S. Barlier, S. W. Chin, M. T. Whited, R. E. McAnally, S. R. Forrest, and M. E. Thompson, Chem. Mater. 23, 4132 (2011).
http://dx.doi.org/10.1021/cm200525h
17.
17. J. C. Wang, S. Q. Shi, C. W. Leung, S. P. Lau, K. Y. Wong, and P. K. L. Chan, Appl. Phys. Lett. 100, 053301 (2012).
http://dx.doi.org/10.1063/1.3680253
18.
18. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).
http://dx.doi.org/10.1021/ja061655o
19.
19. H. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, Adv. Funct. Mater. 17, 2653 (2007).
http://dx.doi.org/10.1002/adfm.200700398
20.
20. N. Beaumont, S. W. Cho, P. Sullivan, D. Newby, K. E. Smith, and T. S. Jones, Adv. Funct. Mater. 22, 561 (2012).
http://dx.doi.org/10.1002/adfm.201101782
21.
21. C.-W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 86, 243506 (2005).
http://dx.doi.org/10.1063/1.1946184
22.
22. P. J. Jadhav, A. Mohanty, J. Sussman, J. Lee, and M. A. Baldo, Nano Lett. 11, 1495 (2011).
http://dx.doi.org/10.1021/nl104202j
23.
23. B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115327
24.
24. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca, Phys. Rev. B 81, 125204 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125204
25.
25. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155305
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/14/10.1063/1.4757575
Loading
/content/aip/journal/apl/101/14/10.1063/1.4757575
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/14/10.1063/1.4757575
2012-10-02
2014-12-29

Abstract

We demonstrate a cascade architecture for organic solar cells with two planar donor/acceptor (DA) heterojunctions operating in series. In a 3-layered structure, subphthalocyanine (SubPc) acts as an ambipolar interlayer between a tetracene (Tc) donor and a C acceptor. The Tc/SubPc and SubPc/C interfaces are both able to contribute to the photocurrent, which results in a short-circuit current in the 3-layer cascade cell larger than in any of the constituent bi-layer DA combinations. Furthermore, the open-circuit voltage is increased due to reduced recombination losses at the DA interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/14/1.4757575.html;jsessionid=63pclckr1o5qu.x-aip-live-06?itemId=/content/aip/journal/apl/101/14/10.1063/1.4757575&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced photocurrent and open-circuit voltage in a 3-layer cascade organic solar cell
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/14/10.1063/1.4757575
10.1063/1.4757575
SEARCH_EXPAND_ITEM