1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/15/10.1063/1.4757997
1.
1. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00604-8
2.
2. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices. Microstruct. 34, 3 (2003).
http://dx.doi.org/10.1016/S0749-6036(03)00093-4
3.
3. Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
4.
4. D. C. Look, C. Coskun, B. Claflin, and G. C. Farlow, Physica B 340, 32 (2003).
http://dx.doi.org/10.1016/j.physb.2003.09.188
5.
5. S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nature Mater. 8, 818 (2009).
http://dx.doi.org/10.1038/nmat2533
6.
6. S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, J. Electrochem. Soc. 158, D282 (2011).
http://dx.doi.org/10.1149/1.3567524
7.
7. L. Xu, Y. Guo, Q. Liao, J. Zhang, and D. Xu, J. Phys. Chem. B 109, 13519 (2005).
http://dx.doi.org/10.1021/jp051007b
8.
8. L. S. Mende and J. L. MacManus-Driscoll, Mater. Today 10, 40 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70078-0
9.
9. L. E. Greene, M. Law, D. H. Tan, M. Montano, and J. Goldberger, Nano Lett. 5, 1231 (2005).
http://dx.doi.org/10.1021/nl050788p
10.
10. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, Nature Mater. 2, 821 (2003).
http://dx.doi.org/10.1038/nmat1014
11.
11. Z. Chen and L. Gao, J. Cryst. Growth 293, 522 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.05.082
12.
12. D. S. Boyle, K. Govender, and P. O'Brien, Chem. Commun. 1, 80 (2002).
http://dx.doi.org/10.1039/b110079n
13.
13. W. Wang, H. Wu, C. Yang, C. Luo, Y. Zhang, J. Chen, and Y. Cao, Appl. Phys. Lett. 90, 183512 (2007).
http://dx.doi.org/10.1063/1.2735937
14.
14. Y. Kim, S. A. Choulis, J. Nelson, D. C. Bradley, S. Cook, and J. R. Durrant, Appl. Phys. Lett. 86, 063502 (2005).
http://dx.doi.org/10.1063/1.1861123
15.
15. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
16.
16. Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, Adv. Funct. Mater. 19, 1227 (2009).
http://dx.doi.org/10.1002/adfm.200801286
17.
17. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
18.
18. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
19.
19. D. W. Zhao, S. T. Tan, L. Ke, P. Liu, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, and D. L. Kwong, Sol. Energy. Mater. Sol. Cells 94, 985 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.02.010
20.
20. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 353301 (2008).
http://dx.doi.org/10.1063/1.2945281
21.
21. Y. Sun, X. Gong, B. B. Y. Hsu, H.-L. Yip, A. K.-Y. Jen, and A. J. Heeger, Appl. Phys. Lett. 97, 193310 (2010).
http://dx.doi.org/10.1063/1.3518074
22.
22. K. Takanezawa, K. Hirota, Q.-S. Wei, K. Tajima, and K. Hashimoto, J. Phys. Chem. C 111, 7218 (2007).
http://dx.doi.org/10.1021/jp071418n
23.
23. T. Shirakawa, T. Umeda, Y. Hashimoto, A. Fukii, and K. Yoshino, J. Phys. D: Appl. Phys. 37, 847 (2004).
http://dx.doi.org/10.1088/0022-3727/37/6/007
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/15/10.1063/1.4757997
Loading
/content/aip/journal/apl/101/15/10.1063/1.4757997
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/15/10.1063/1.4757997
2012-10-08
2014-12-29

Abstract

We report on the enhanced performance of hybrid photovoltaic devices consisting of poly(3-hexylthiophene), (6,6)-phenyl C butyric acid methyl ester, and zinc oxide (ZnO) nanorod arrays grown on seedless indium tin oxide (ITO) glass in aqueous zinc chloride solution. Introduction of optimized-length ZnO nanorod arrays between hole injection and ITO layers increased photocurrent density from 8.0 to 8.8 mA/cm2 and fill factor from 42% to 47%. The absence of a seed layer significantly reduced incident light reflection on the ITO glass and resulted in an overall 10% increase in photocurrent. A photovoltaic device based on a ZnO nanostructure length of 100 nm exhibited a maximum power conversion efficiency of 2.4%, 15% higher than that of an equivalent device without ZnO nanorods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/15/1.4757997.html;jsessionid=3abaurr8ue7ag.x-aip-live-06?itemId=/content/aip/journal/apl/101/15/10.1063/1.4757997&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optimization of antireflective zinc oxide nanorod arrays on seedless substrate for bulk-heterojunction organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/15/10.1063/1.4757997
10.1063/1.4757997
SEARCH_EXPAND_ITEM