1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Rhenium oxide as an efficient p-dopant to overcome S-shaped current density-voltage curves in organic photovoltaics with a deep highest occupied molecular orbital level donor layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/15/10.1063/1.4758681
1.
1. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
2.
2. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
3.
3. K. Schulze, C. Uhrich, R. Schupprl, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, and P. Bauerle, Adv. Mater. 18, 2872 (2006).
http://dx.doi.org/10.1002/adma.200600658
4.
4. R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Korner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, and P. Bauerle, J. Am. Chem. Soc. 134, 11064 (2012).
http://dx.doi.org/10.1021/ja302320c
5.
5. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).
http://dx.doi.org/10.1021/ja061655o
6.
6. I. Hancox, P. Sullivan, K. V. Chauhan, N. Beaumont, L. A. Rochford, R. A. Hatton, T. S. Jones, Org. Electron. 11, 2019 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.09.014
7.
7. I. Hancox, L. A. Rochford, D. Clare, P. Sullivan, and T. S. Jones, Appl. Phys. Lett. 99, 013304 (2011).
http://dx.doi.org/10.1063/1.3607478
8.
8. R. Pandey, A. A. Gunawan, K. A. Mkhoyan, and R. J. Holmes, Adv. Funct. Mater. 22, 617 (2012).
http://dx.doi.org/10.1002/adfm.201101948
9.
9. J. Wagner, M. Gruber, A. Hinderhofer, A. Wilke, B. Broker, J. Frisch, P. Amsalem, A. Vollmer, A. Opitz, N. Koch, F. Schreiber, and W. Brutting, Adv. Funct. Mater. 20, 4295 (2010).
http://dx.doi.org/10.1002/adfm.201001028
10.
10. J. Wagner, M. Gruber, A. Wilke, Y. Tanaka, K. Topczak, A. Steindamm, U. Hormann, A. Opitz, Y. Nakayama, H. Ishii, J. Pflaum, N. Koch, and W. Brutting, J. Appl. Phys. 111, 054509 (2012).
http://dx.doi.org/10.1063/1.3692050
11.
11. M. Hirade and C. Adachi, Appl. Phys. Lett. 99, 153302 (2011).
http://dx.doi.org/10.1063/1.3650472
12.
12. A. Ojala, A. Petersen, A. Fuchs, R. Lovrincic, C. Polking, J. Trollmann, J. Hwang, C. Lennartz, H. Reichelt, H. W. Hoffken, A. Pucci, P. Erk, T. Kirchartz, and F. Wurthner, Adv. Funct. Mater. 22, 86 (2012).
http://dx.doi.org/10.1002/adfm.201101697
13.
13. V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Burckstummer, E. V. Tulyakova, and F. Wurthner, Adv. Energy Mater. 1, 888 (2011).
http://dx.doi.org/10.1002/aenm.201100283
14.
14. G. Chen, H. Sasabe, Z. Wang, X.-F. Wang, Z. Hong, Y. Yang, and J. Kido, Adv. Mater. 24, 2768 (2012).
http://dx.doi.org/10.1002/adma.201200234
15.
15. S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu, and K.-T. Wong, Chem. Commun. 48, 1857 (2012).
http://dx.doi.org/10.1039/c2cc16390j
16.
16. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nature Mater. 11, 44 (2012).
http://dx.doi.org/10.1038/nmat3160
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4758681 for J-V and IPCE curve with thin interfacial layer. [Supplementary Material]
18.
18. J.-H. Lee, D.-S. Leem, and J.-J. Kim, Org. Electron. 9, 805 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.011
19.
19. J. Blochwitz, T. Fritz, M. Pfeiffer, K. Leo, D. M. Alloway, P. A. Lee, and N. R. Armstrong, Org. Electron. 2, 97 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00016-7
20.
20. J. Lee, S.-Y. Kim, C.-S. Kim, and J.-J. Kim, Appl. Phys. Lett. 97, 083306 (2010).
http://dx.doi.org/10.1063/1.3480612
21.
21. A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 78, 3343 (2001).
http://dx.doi.org/10.1063/1.1359485
22.
22. Y.-S. Park, W.-I. Jeong, and J.-J. Kim, J. Appl. Phys. 110, 124519 (2011).
http://dx.doi.org/10.1063/1.3672836
23.
23. J.-H. Lee, D.-S. Leem, and J.-J. Kim, Org. Electron. 11, 486 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.12.002
24.
24. Y.-H. Kim, S. Kwon, J.-H. Lee, S.-M. Park, Y.-M. Lee, and J.-W. Kim, J. Phys. Chem. C. 115, 6599 (2011).
http://dx.doi.org/10.1021/jp111128k
25.
25. J.-H. Lee, D.-S. Leem, H.-J. Kim, and J.-J. Kim, Appl. Phys. Lett. 94, 123306 (2009).
http://dx.doi.org/10.1063/1.3107267
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/15/10.1063/1.4758681
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Device structure and energy diagram of an OPV cell with a p-HTL for ohmic contact to the ITO, intrinsic HTL, the active material stack, and the BCP/Al contact. (b) HOMO levels of three different HTLs and donor layer.

Image of FIG. 2.

Click to view

FIG. 2.

curves of OPV cells using 25 mol. % ReO doped 2TNATA (square), NPB (circle), and TAPC (triangle).

Image of FIG. 3.

Click to view

FIG. 3.

curves of OPV cells using an intrinsic TAPC layer (square) and doped TAPC layers with 25 mol. % CuI (circle), WO (triangle), MoO (inversed triangle), and ReO (left triangle).

Image of FIG. 4.

Click to view

FIG. 4.

(a) curves of OPV cells with varying doping concentrations of p-HTL from 5 mol. % to 25 mol. % when ReO is used as a dopant. (b) curves of OPV cells with varying doping concentrations of p-HTL from 5 mol. % to 25 mol. % when MoO is used as a dopant.

Tables

Generic image for table

Click to view

Table I.

The energy level difference (ΔE) between the HOMO level of the HOST and the workfunction of the dopant, and the photovoltaic properties of devices using various dopants.

Loading

Article metrics loading...

/content/aip/journal/apl/101/15/10.1063/1.4758681
2012-10-09
2014-04-25

Abstract

Effect of p-dopants in a p-doped hole transport layer inserted between indium tin oxide and a donor layer of α,α′-bis(2,2-dicyanovinyl)-quinquethiophene with a deep highest occupied molecular orbital level is reported to remove the S-shape in the organic photovoltaics (OPV) cell. Among the p-dopants of ReO, MoO, WO, and CuI, ReO possesses the largest work function and turns out to be the most efficient -dopant to remove the S-shape of the current density-voltage curve in the OPV cells. The rest of the dopants could not get rid of the S-shape, even with a doping concentration of 25 mol. %. The difference among the dopants can be understood by the different charge generation efficiency of the dopants.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/15/1.4758681.html;jsessionid=5jqkta3fq3dk8.x-aip-live-03?itemId=/content/aip/journal/apl/101/15/10.1063/1.4758681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Rhenium oxide as an efficient p-dopant to overcome S-shaped current density-voltage curves in organic photovoltaics with a deep highest occupied molecular orbital level donor layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/15/10.1063/1.4758681
10.1063/1.4758681
SEARCH_EXPAND_ITEM