1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Localizing trapped charge carriers in NO2 sensors based on organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/15/10.1063/1.4758697
1.
1. A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, Sens. Actuators B 171–172, 25 (2012).
http://dx.doi.org/10.1016/j.snb.2012.05.026
2.
2. C. Di Franco, A. Elia, V. Spagnolo, G. Scamarcio, P. M. LugarÃ, E. Ieva, N. Cioffi, L. Torsi, G. Bruno, M. Losurdo, M. Garcia, S. Wolter, A. Brown, and M. Ricco, Sensors 9, 3337 (2009).
http://dx.doi.org/10.3390/s90503337
3.
3. A. Das, R. Dost, T. Richardson, M. Grell, J. J. Morrison, and M. L. Turner, Adv. Mater. 19, 4018 (2007).
http://dx.doi.org/10.1002/adma.200701504
4.
4. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, Science 287, 622 (2000).
http://dx.doi.org/10.1126/science.287.5453.622
5.
5. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, Nano Lett. 4, 1919 (2004).
http://dx.doi.org/10.1021/nl0489283
6.
6. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, New York, 1981).
7.
7. A. Andringa, J. R. Meijboom, E. C. P. Smits, S. G. J. Mathijssen, P. W. M. Blom, and D. M. de Leeuw, Adv. Funct. Mater. 21, 100 (2011).
http://dx.doi.org/10.1002/adfm.201001560
8.
8. A. Andringa, N. Vlietstra, E. C. P. Smits, M. Spijkman, H. L. Gomes, J. H. Klootwijk, P. W. M. Blom, and D. M. de Leeuw, Sens. Actuators B 171–172, 1172 (2012).
http://dx.doi.org/10.1016/j.snb.2012.06.062
9.
9. L. S. C. Pingree, O. G. Reid, and D. S. Ginger, Adv. Mater. 21, 19 (2009).
http://dx.doi.org/10.1002/adma.200801466
10.
10. V. Palermo, M. Palma, and P. Samori, Adv. Mater. 18, 145 (2006).
http://dx.doi.org/10.1002/adma.200501394
11.
11. S. G. J. Mathijssen, M. Spijkman, A. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. 22, 5105 (2010).
http://dx.doi.org/10.1002/adma.201001865
12.
12. F. Gholamrezaie, A. Andringa, W. S. C. Roelofs, A. Neuhold, M. Kemerink, P. W. M. Blom, and D. M. de Leeuw, Small 8, 241 (2012).
http://dx.doi.org/10.1002/smll.201101467
13.
13. N. Stingelin-Stutzmann, E. C. P. Smits, H. Wondergem, C. Tanase, P. W. M. Blom, P. Smith, and D. M. de Leeuw, Nat. Mater. 4, 601 (2005).
http://dx.doi.org/10.1038/nmat1426
14.
14. M. B. Madec, P. J. Smith, A. Malandraki, N. Wang, J. G. Korvink, and S. G. Yeates, J. Mater. Chem. 20, 9155 (2010).
http://dx.doi.org/10.1039/c0jm01614d
15.
15. M. B. Madec, J. J. Morrison, V. Sanchez-Romaguera, M. L. Turner, and S. G. Yeates, J. Mater. Chem. 19, 6750 (2009).
http://dx.doi.org/10.1039/b910476c
16.
16. T. A. M. Ferenczi, C. Müller, D. D. C. Bradley, P. Smith, J. Nelson, and N. Stingelin, Adv. Mater. 23, 4093 (2011).
http://dx.doi.org/10.1002/adma.201102100
17.
17. X. R. Li, W. T. T. Smaal, C. Kjellander, B. van der Putten, K. Gualandris, E. C. P. Smits, J. Anthony, D. J. Broer, P. W. M. Blom, J. Genoe, and G. Gelinck, Org. Electron. 12, 1319 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.04.020
18.
18. D. S. H. Charrier, M. Kemerink, B. E. Smalbrugge, T. de Vries, and R. A. J. Janssen, ACS Nano 2, 622 (2008).
http://dx.doi.org/10.1021/nn700190t
19.
19. J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. C. Bradley, and T. D. Anthopoulos, J. Mater. Chem. 20, 2562 (2010).
http://dx.doi.org/10.1039/b921674j
20.
20. S. Huttner, M. Sommer, and M. Thelakkat, Appl. Phys. Lett. 92, 093302 (2008).
http://dx.doi.org/10.1063/1.2885712
21.
21. S. M. Lindner and M. Thelakkat, Macromolecules 37, 8832 (2004).
http://dx.doi.org/10.1021/ma0481656
22.
22. J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, Chem. Mater. 16, 4543 (2004).
http://dx.doi.org/10.1021/cm049598q
23.
23. J. J. Brondijk, M. Spijkman, F. van Seijen, P. W. M. Blom, and D. M. de Leeuw, Phys. Rev. B 85, 165310 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165310
24.
24. S. G. J. Mathijssen, M. Kemerink, A. Sharma, M. Coelle, P. A. Bobbert, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. 20, 975 (2008).
http://dx.doi.org/10.1002/adma.200702688
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/15/10.1063/1.4758697
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Charge carrier trapping in NO ambient. (a) Transfer curves of a field-effect transistor using as a semiconductor ActivInk N1400 blended with polystyrene. The gate sweep was recorded at a source-drain bias of 10 V. The black transfer curve corresponds to the pristine transistor in N. The transistor was then exposed to 1.5 ppm NO and measured after application of a positive gate bias of the indicated value for 60 s. The threshold voltage shifts to the applied gate bias. The inset shows the chemical structure of ActivInk N1400. (b) Potential profiles corresponding to the transfer curves of Figure 1(a) with ActivInk N1400 still present.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic of the exfoliation experiment to localize trapped charge carriers. (a) The transistor after applying a positive gate bias in NO. The trapped charges are either in the semiconductor (I) or at the interface with the gate dielectric (II). In both cases, when there is no screening, the trapped charges give rise to a negative surface potential equal to the threshold voltage shift, . (b) Transfer characteristics after the exfoliation process. In case I, the exfoliation will remove the semiconductor including the trapped charge carriers. The resulting surface potential is then zero. In case II, the trapped charges will stay behind at the gate dielectric interface and the negative surface potential remains.

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of surface potential before and after delamination. (a) Surface potential profiles of an N1400 ActivInk transistor after applying a 20 V gate bias for 60 s in NO. The black curve shows the potential profile with the semiconductor still present and the red curve shows the potential profile after delamination. The surface potentials are identical both with and without semiconductor, which demonstrates that the charges are not trapped in the semiconductor but trapped at the gate dielectric interface. (b) The actual exfoliation process, using adhesive tape and tweezers.

Image of FIG. 4.

Click to view

FIG. 4.

Exfoliation of different semiconductors. (a) Surface potential profiles of -type poly(perylene bisimide acrylate) (PPerAcr) field-effect transistor after applying a gate bias of 30 V for 60 s in NO. The chemical structure of PPerAcr is shown in the inset. The black curve shows the potential profile with the semiconductor still present and the red curve shows the potential profile after delamination. (b) Surface potential profiles of a -type PTAA field-effect transistor, after applying a gate bias of 20 V for 300 s in NO. The chemical structure of PTAA is shown in the inset. The black curve shows the potential profile with the semiconductor still present and the red curve shows the potential profile after delamination.

Loading

Article metrics loading...

/content/aip/journal/apl/101/15/10.1063/1.4758697
2012-10-08
2014-04-17

Abstract

Field-effect transistors have emerged as NO sensors. The detection relies on trapping of accumulated electrons, leading to a shift of the threshold voltage. To determine the location of the trapped electrons we have delaminated different semiconductors from the transistors with adhesive tape and measured the surface potential of the revealed gate dielectric with scanning Kelvin probe microscopy. We unambiguously show that the trapped electrons are not located in the semiconductor but at the gate dielectric. The microscopic origin is discussed. Pinpointing the location paves the way to optimize the sensitivity of NO field-effect sensors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/15/1.4758697.html;jsessionid=23nh9ig8nuhnq.x-aip-live-01?itemId=/content/aip/journal/apl/101/15/10.1063/1.4758697&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Localizing trapped charge carriers in NO2 sensors based on organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/15/10.1063/1.4758697
10.1063/1.4758697
SEARCH_EXPAND_ITEM