1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High-speed plasmonic nanolithography with a solid immersion lens-based plasmonic optical head
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/16/10.1063/1.4760263
1.
1. X. Shi and L. Hesselink, Opt. Lett. 28, 1320 (2003).
http://dx.doi.org/10.1364/OL.28.001320
2.
2. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006).
http://dx.doi.org/10.1021/nl052371p
3.
3. E. X. Jin and X. Xu, Jpn. J. Appl. Phys., Part 1 43, 407 (2004).
http://dx.doi.org/10.1143/JJAP.43.407
4.
4. S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, Opt. Express 18, 7369 (2010).
http://dx.doi.org/10.1364/OE.18.007369
5.
5. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
http://dx.doi.org/10.1364/OE.17.019476
6.
6. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
http://dx.doi.org/10.1038/nnano.2008.303
7.
7. L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. S. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 1 (2011).
http://dx.doi.org/10.1038/srep00175
8.
8. E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, Jpn. J. Appl. Phys., Part 1 44, 3574 (2005).
http://dx.doi.org/10.1143/JJAP.44.3574
9.
9. T. Kim, W. S Lee, S. M. Kang, N. C. Park, K. S Park, and Y. P. Park, J. Opt. 14, 045001 (2012).
http://dx.doi.org/10.1088/2040-8978/14/4/045001
10.
10. K. S. Park, T. Kim, W. S. Lee, H. E. Joe, B. K. Min, Y. P. Park, H. S. Yang, S. M. Kang, and N. C. Park, Jpn. J. Appl. Phys., Part 1 51, 08JF01 (2012).
http://dx.doi.org/10.1143/JJAP.51.08JF01
11.
11. M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, Jpn. J. Appl. Phys., Part 1 45, 1332 (2006).
http://dx.doi.org/10.1143/JJAP.45.1332
12.
12. T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoko, and M. Yamamoto, Jpn. J. Appl. Phys., Part 1 42, 2719 (2003).
http://dx.doi.org/10.1143/JJAP.42.2719
13.
13. F. Zijp, M. B. van der Mark, J. L. Lee, C. A. Verchuren, B. H. W. Hendriks, M. L. M. Balistreri, H. P. Urbach, M. A. H. van der Aa, and A. V. Padiy, Proc. SPIE 5380, 209 (2004).
http://dx.doi.org/10.1117/12.562376
14.
14. J. L. Lee, M. van der Aa, C. Verchuren, F. Zijp, and M. V. D. Mark, Jpn. J. Appl. Phys., Part 1 44, 3423 (2005).
http://dx.doi.org/10.1143/JJAP.44.3423
15.
15. J. G. Kim, W. H. Shin, J. Jeong, K. S. Park, N. C. Park, H. S. Yang, and Y. P. Park, Jpn. J. Appl. Phys., Part 1 48, 03A044 (2009).
http://dx.doi.org/10.1143/JJAP.48.03A044
16.
16. H. W. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. S. Yang, Y. C. Rhim, and Y. P. Park, Jpn. J. Appl. Phys., Part 1 50, 09MC04 (2011).
http://dx.doi.org/10.1143/JJAP.50.09MC04
17.
17. K. Kunz, and R. Lubbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, Boca Raton, FL, 1996).
18.
18. E. D. Palik, Handbook of Optical Constants of Solid (Academic, San Diego, CA, 1985).
19.
19. E. X. Jin and X. Xu, Appl. Phys. Lett. 86, 111106 (2005).
http://dx.doi.org/10.1063/1.1875747
20.
20. K. Fujiura and M. Sasaura, NTT Tech. Rev. 5, 1 (2007).
21.
21. C. Gent and T. W. Ebbesen, Nature 445, 39 (2007).
http://dx.doi.org/10.1038/nature05350
22.
22. E. Lee and J. W. Hahn, Nanotechology 19, 275303 (2008).
http://dx.doi.org/10.1088/0957-4484/19/27/275303
23.
23. Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, and J. W. Hahn, Opt. Express 19, 19296 (2011).
http://dx.doi.org/10.1364/OE.19.019296
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/16/10.1063/1.4760263
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the plasmonic optical head. (b) Cross-sectional view of the plasmonic optical head and SIL bottom surface. λ1 = 408 nm was used for nanoscale patterning by localized surface plasmons and λ2 = 633 nm was used for near-field active nanogap control based on the evanescent wave.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Normalized electric field amplitude distribution of light propagating through the sharp-ridged aperture at a distance of 20 nm from the exit-plane and its cross sections of the (a) y-z plane and the (b) x-z plane. For the FDTD calculation, the x-polarized light is assumed to be incident on the aperture; the nanogap between the aperture and the PR is 20 nm.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Micrograph of the SIL. The image shows the conical shape that ends in a small, flat SIL tip. (b) FIB micrograph of the sharp-ridged aperture on the SIL bottom surface. Reproduced with permission from K. Fujiura and M. Sasaura, NTT Tech. Rev. 5, 1 (2007). Copyright 2007, NTT Technical Review.

Image of FIG. 4.

Click to view

FIG. 4.

Schematic of the experimental setup for the plasmonic nanolithography system using a plasmonic optical head with a near-field active-gap control. The wavelength of the laser used for patterning was 408 nm. The laser wavelength for the focus gap servo was 633 nm.

Image of FIG. 5.

Click to view

FIG. 5.

AFM micrograph of (a) a pattern with a line width of 70 nm at a patterning speed of 100 mm/s and (b) its cross-sectional profile.

Image of FIG. 6.

Click to view

FIG. 6.

AFM micrograph of a dotted-line pattern. The width of dotted-line is 200 nm at a patterning speed of 100 mm/s.

Loading

Article metrics loading...

/content/aip/journal/apl/101/16/10.1063/1.4760263
2012-10-16
2014-04-18

Abstract

This letter describes the use of a plasmonic optical head to achieve high-speed nanopatterning. A plasmonic optical head employs both a sharp-ridged nanoaperture and a nanogap control to maintain the nanogap required for near-field nanolithography. The nanogap control uses a gap error signal produced by evanescent coupling through the air-gap. We demonstrate that a plasmonic optical head achieves a patterning resolution of 70 nm and a patterning speed of 100 mm/s. The proposed combination of a surface plasmonnanoaperture and a nanogap servosystem is one of the strategies used to achieve high-speed, high-resolution nanolithography.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/16/1.4760263.html;jsessionid=mnyhwqgm0q0a.x-aip-live-01?itemId=/content/aip/journal/apl/101/16/10.1063/1.4760263&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-speed plasmonic nanolithography with a solid immersion lens-based plasmonic optical head
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/16/10.1063/1.4760263
10.1063/1.4760263
SEARCH_EXPAND_ITEM