1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Photonic non-volatile memories using phase change materials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/17/10.1063/1.4758996
1.
1. S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. chen, H. L. Lung, and C. H. Lam, IBM J. Res. Dev. 52, 465479 (2008).
http://dx.doi.org/10.1147/rd.524.0465
2.
2. M. Wuttig and N. Yamada, Nature Mater. 6, 824832 (2007).
http://dx.doi.org/10.1038/nmat2009
3.
3. H. P. Wong, S. Raoux, S. B. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Proc. IEEE 98, 22012227 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070050
4.
4. J. Siegel, A. Schropp, J. Solis, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 22502252 (2004).
http://dx.doi.org/10.1063/1.1689756
5.
5. D. Q. Huang, X. S. Miao, Z. Li, J. J. Sheng, J. J. Sun, J. H. Peng, J. H. Wang, Y. Chen, and X. M. Long, Appl. Phys. Lett. 98, 242106 (2011).
http://dx.doi.org/10.1063/1.3597792
6.
6. W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, Appl. Phys. Lett. 93, 043121 (2008).
http://dx.doi.org/10.1063/1.2963196
7.
7. S.-H. Lee, Y. Jung, and R. Agarwal, Nat. Nanotechnol. 2, 626630 (2007).
http://dx.doi.org/10.1038/nnano.2007.291
8.
8. S. Kim, B. J. Bae, Y. Zhang, R. G. D. Jeyasingh, Y. Kim, I. G. Baek, S. Park, S. W. Nam, and H. -S. P. Wong, IEEE Trans. Electron Devices 58, 14831489 (2011).
http://dx.doi.org/10.1109/TED.2011.2121911
9.
9. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, Nat. Nanotechnol. 6, 501505 (2011).
http://dx.doi.org/10.1038/nnano.2011.96
10.
10. N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 70207028 (2000).
http://dx.doi.org/10.1063/1.1314323
11.
11. M. Bagheri, M. Poot, M. Li, W. Pernice, and H. X. Tang, Nat. Nanotechnol. 6, 726732 (2011).
http://dx.doi.org/10.1038/nnano.2011.180
12.
12. K. Fong, W. Pernice, M. Li, and H. Tang, Appl. Phys. Lett. 97, 073112 (2010).
http://dx.doi.org/10.1063/1.3480411
13.
13. A. Gondarenko, J. A. Levy, and M. Lipson, Opt. Express 17, 1136611370 (2009).
http://dx.doi.org/10.1364/OE.17.011366
14.
14. M. Li, W. Pernice, and H. Tang, Nat. Nanotechnol. 4, 377 (2009).
http://dx.doi.org/10.1038/nnano.2009.92
15.
15. M. Li, W. Pernice, and H. Tang, Appl. Phys. Lett. 97, 183110 (2010).
http://dx.doi.org/10.1063/1.3513213
16.
16. A. Yariv, IEEE J. Quantum Electron. 9, 919933 (1973).
http://dx.doi.org/10.1109/JQE.1973.1077767
17.
17. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, IEEE Trans. Antennas Propag. 55, 916923 (2007).
http://dx.doi.org/10.1109/TAP.2007.891853
18.
18. K. Fong, W. Pernice, M. Li, and H. Tang, Opt. Express 19, 015098 (2011).
http://dx.doi.org/10.1364/OE.19.015098
19.
19. W. Pernice, J. Comput. Theor. Nanosci. 7, 114 (2010).
http://dx.doi.org/10.1166/jctn.2010.1332
20.
20. S. Y. Kim, S. J. Kim, H. Seo, and M. R. Kim, Proc. SPIE 3401, 112118 (1998).
http://dx.doi.org/10.1117/12.327935
21.
21. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 19681975 (2002).
http://dx.doi.org/10.1109/JLT.2002.803058
22.
22. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Science 332, 568570 (2011).
http://dx.doi.org/10.1126/science.1201938
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4758996
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic overview of the proposed memory element. Light from a control port (red) is coupled evanescently to the ring resonator to perform the switching operation of the GST through photothermal heating. (b) A cross-sectional view of the coupling region showing the control port on the left side and the GST covered free-standing waveguide section on the right side. (c) The calculated modal profiles of the GST covered waveguide cross-section when the GST is in the amorphous state (left panel) and the crystalline state (right panel).

Image of FIG. 2.

Click to view

FIG. 2.

(a) The refractive index of GST in dependence of wavelength used during the CMT and FDTD modeling. Markers are taken from Ref. 20, while the solid lines represent the multi-Lorentzian fit. The relevant wavelengths for the control light (orange) and the probe light (purple) are marked. (b) The calculated transmission spectrum of a ring resonator critically coupled in the amorphous state (blue curve). Upon switching the GST into the crystalline state, the transmission profile changes significantly (red curve). (c) Zoom into a resonance at 1546 nm, showing optical Q of 9400.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The calculated transmission past the ring resonator in dependence of wavelength and the degree of crystallization of the GST. By fully changing the state of the GST layer, the coupling condition into the ring is switched from the critically coupled to the undercoupled regime. (b) The transmission at the cross-sectional line in (a), showing the increase in transmission as the ring shifts into the weakly coupled regime. (c) The transmission on resonance in dependence of the layer thickness of both GST and silicon nitride, as well as the degree of crystallization.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The thermal profile extracted from the calculated intensity distribution of 700 nm input light. Shown is the temperature distribution along the center of the free-standing waveguide after 3 ns ringdown time. (b) The ringdown time of the GST covered silicon nitride beam with a decay constant of 547 ps. Inset: Transient simulation of the heating profile within the GST layer using a 600 fs optical pulse.

Loading

Article metrics loading...

/content/aip/journal/apl/101/17/10.1063/1.4758996
2012-10-22
2014-04-18

Abstract

We propose an all-photonic, non-volatile memory, and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neumann neuromorphic computing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/17/1.4758996.html;jsessionid=1gswgugsk0mfc.x-aip-live-06?itemId=/content/aip/journal/apl/101/17/10.1063/1.4758996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photonic non-volatile memories using phase change materials
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4758996
10.1063/1.4758996
SEARCH_EXPAND_ITEM