1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Photonic non-volatile memories using phase change materials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/17/10.1063/1.4758996
1.
1. S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. chen, H. L. Lung, and C. H. Lam, IBM J. Res. Dev. 52, 465479 (2008).
http://dx.doi.org/10.1147/rd.524.0465
2.
2. M. Wuttig and N. Yamada, Nature Mater. 6, 824832 (2007).
http://dx.doi.org/10.1038/nmat2009
3.
3. H. P. Wong, S. Raoux, S. B. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Proc. IEEE 98, 22012227 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070050
4.
4. J. Siegel, A. Schropp, J. Solis, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 22502252 (2004).
http://dx.doi.org/10.1063/1.1689756
5.
5. D. Q. Huang, X. S. Miao, Z. Li, J. J. Sheng, J. J. Sun, J. H. Peng, J. H. Wang, Y. Chen, and X. M. Long, Appl. Phys. Lett. 98, 242106 (2011).
http://dx.doi.org/10.1063/1.3597792
6.
6. W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, Appl. Phys. Lett. 93, 043121 (2008).
http://dx.doi.org/10.1063/1.2963196
7.
7. S.-H. Lee, Y. Jung, and R. Agarwal, Nat. Nanotechnol. 2, 626630 (2007).
http://dx.doi.org/10.1038/nnano.2007.291
8.
8. S. Kim, B. J. Bae, Y. Zhang, R. G. D. Jeyasingh, Y. Kim, I. G. Baek, S. Park, S. W. Nam, and H. -S. P. Wong, IEEE Trans. Electron Devices 58, 14831489 (2011).
http://dx.doi.org/10.1109/TED.2011.2121911
9.
9. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, Nat. Nanotechnol. 6, 501505 (2011).
http://dx.doi.org/10.1038/nnano.2011.96
10.
10. N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 70207028 (2000).
http://dx.doi.org/10.1063/1.1314323
11.
11. M. Bagheri, M. Poot, M. Li, W. Pernice, and H. X. Tang, Nat. Nanotechnol. 6, 726732 (2011).
http://dx.doi.org/10.1038/nnano.2011.180
12.
12. K. Fong, W. Pernice, M. Li, and H. Tang, Appl. Phys. Lett. 97, 073112 (2010).
http://dx.doi.org/10.1063/1.3480411
13.
13. A. Gondarenko, J. A. Levy, and M. Lipson, Opt. Express 17, 1136611370 (2009).
http://dx.doi.org/10.1364/OE.17.011366
14.
14. M. Li, W. Pernice, and H. Tang, Nat. Nanotechnol. 4, 377 (2009).
http://dx.doi.org/10.1038/nnano.2009.92
15.
15. M. Li, W. Pernice, and H. Tang, Appl. Phys. Lett. 97, 183110 (2010).
http://dx.doi.org/10.1063/1.3513213
16.
16. A. Yariv, IEEE J. Quantum Electron. 9, 919933 (1973).
http://dx.doi.org/10.1109/JQE.1973.1077767
17.
17. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, IEEE Trans. Antennas Propag. 55, 916923 (2007).
http://dx.doi.org/10.1109/TAP.2007.891853
18.
18. K. Fong, W. Pernice, M. Li, and H. Tang, Opt. Express 19, 015098 (2011).
http://dx.doi.org/10.1364/OE.19.015098
19.
19. W. Pernice, J. Comput. Theor. Nanosci. 7, 114 (2010).
http://dx.doi.org/10.1166/jctn.2010.1332
20.
20. S. Y. Kim, S. J. Kim, H. Seo, and M. R. Kim, Proc. SPIE 3401, 112118 (1998).
http://dx.doi.org/10.1117/12.327935
21.
21. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 19681975 (2002).
http://dx.doi.org/10.1109/JLT.2002.803058
22.
22. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Science 332, 568570 (2011).
http://dx.doi.org/10.1126/science.1201938
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4758996
Loading
/content/aip/journal/apl/101/17/10.1063/1.4758996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/17/10.1063/1.4758996
2012-10-22
2014-09-22

Abstract

We propose an all-photonic, non-volatile memory, and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neumann neuromorphic computing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/17/1.4758996.html;jsessionid=j3xgv41v4q3j.x-aip-live-06?itemId=/content/aip/journal/apl/101/17/10.1063/1.4758996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photonic non-volatile memories using phase change materials
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4758996
10.1063/1.4758996
SEARCH_EXPAND_ITEM