1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electric double layers allow for opaque electrodes in high performance organic optoelectronic devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/17/10.1063/1.4762823
1.
1. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009);
http://dx.doi.org/10.1126/science.1176706
1. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007);
http://dx.doi.org/10.1126/science.1141711
1. P. Peumans, S. Uchida, and S. R. Forrest, Nature 425, 158 (2003).
http://dx.doi.org/10.1038/nature01949
2.
2. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007);
http://dx.doi.org/10.1021/cr050149z
2. K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
3.
3. C. G. Granqvist and A. Hultåker, Thin Solid Films 411, 1 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00163-3
4.
4. M. Helgesen, R. Søndergaard, and F. C. Krebs, J. Mater. Chem. 20, 36 (2010);
http://dx.doi.org/10.1039/b913168j
4. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).
http://dx.doi.org/10.1002/adfm.201002290
5.
5. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, Adv. Mater. 20, 4061 (2008);
http://dx.doi.org/10.1002/adma.200800338
5. Y. Zhou, H. Cheun, S. Choi, W. J. Potscavage, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 97, 153304 (2010).
http://dx.doi.org/10.1063/1.3499299
6.
6. L. G. D. Acro, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010);
http://dx.doi.org/10.1021/nn901587x
6. G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, Appl. Phys. Lett. 97, 213301 (2010).
http://dx.doi.org/10.1063/1.3514551
7.
7. H. E. Yin, C. F. Lee, and W. Y. Chiu, Polymer 52, 5065 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.08.044
8.
8. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 063302 (2009).
http://dx.doi.org/10.1063/1.3204698
9.
9. F. Bonaccorso, Z. Sun, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
10.
10. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 128, 7732 (2006);
http://dx.doi.org/10.1021/ja061714y
10. W. Lu, A. G. Fadeev, B. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Zhou, G. G. Wallace, D. R. MacFarlane, S. A. Forsyth, and M. Forsyth, Science 297, 983 (2002);
http://dx.doi.org/10.1126/science.1072651
10. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, J. Phys. Chem. B 110, 10228 (2006);
http://dx.doi.org/10.1021/jp0620872
10. C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, and M. Mastragostino, J. Power Sources 185, 1575 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2008.09.016
11.
11. H. von Helmholtz, Ann. Phys. Chem. 7, 337 (1879);
http://dx.doi.org/10.1002/andp.v243:7
11. H. Wang and L. Pilon, J. Phys. Chem. C 115, 16711 (2011).
http://dx.doi.org/10.1021/jp204498e
12.
12. B. Li, Y. Noda, L. Hu, H. Yoshikawa, M. M. Matsushita, and K. Awaga, Appl. Phys. Lett. 100, 163304 (2012).
http://dx.doi.org/10.1063/1.3697988
13.
13. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009).
http://dx.doi.org/10.1002/adfm.200801633
14.
14. Y. Xia, J. H. Cho, J. Lee, P. P. Ruden, and C. D. Frisbie, Adv. Mater. 21, 2174 (2009).
http://dx.doi.org/10.1002/adma.200803437
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4762823 for device fabrication, characterization, experimental setup, and surface morphology. [Supplementary Material]
16.
16. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 105, 2783 (2008);
http://dx.doi.org/10.1073/pnas.0711990105
16. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006);
http://dx.doi.org/10.1063/1.2174093
16. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).
http://dx.doi.org/10.1002/adma.201100038
17.
17. C. J. Ko, Y. K. Lin, F. C. Chen, and C. W. Chu, Appl. Phys. Lett. 90, 063509 (2007).
http://dx.doi.org/10.1063/1.2437703
18.
18. R. Misra, M. McCarthy, and A. F. Hebard, Appl. Phys. Lett. 90, 052905 (2007).
http://dx.doi.org/10.1063/1.2437663
19.
19. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010);
http://dx.doi.org/10.1002/adma.201001339
19. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, Nature Mater. 7, 158 (2008);
http://dx.doi.org/10.1038/nmat2102
19. H. Zhang and J. Ouyang, Org. Electron. 12, 1864 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.07.023
20.
20. A. Iwasaki, L. Hu, R. Suizu, K. Nomura, H. Yoshikawa, K. Awaga, Y. Noda, K. Kanai, Y. Ouchi, K. Seki, and H. Ito, Angew. Chem., Int. Ed. 48, 4022 (2009);
http://dx.doi.org/10.1002/anie.200900472
20. G. Zhang, W. Li, B. Chu, Z. Su, D. Yang, F. Yan, Y. Chen, D. Zhang, L. Han, J. Wang, H. Liu, G. Che, Z. Zhang, and Z. Hu, Org. Electron. 10, 352 (2009);
http://dx.doi.org/10.1016/j.orgel.2008.11.006
20. K. S. Narayan and T. B. Singh, Appl. Phys. Lett. 74, 3456 (1999);
http://dx.doi.org/10.1063/1.124126
20. G. A. O'Brien, A. J. Quinn, D. A. Tanner, and G. A. Redmond, Adv. Mater. 18, 2379 (2006).
http://dx.doi.org/10.1002/adma.v18:18
21.
21. A. R. Jha, Infrared Technology-Applications to Electro-Optics, Photonic Devices, and Sensors (John Wiley & Sons, New York, 2000), p. 245;
21. P. Bhattacharya, Semiconductor Optoelectronics Device (Prentice-Hall, Upper Saddle River, NJ, 1997), p. 345.
22.
22. S. Züfle, N. Christ, S. W. Kettlitz, S. Valouch, and U. Lemmer, Appl. Phys. Lett. 97, 063306 (2010);
http://dx.doi.org/10.1063/1.3473818
22. M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, Appl. Phys. Lett. 91, 071118 (2007).
http://dx.doi.org/10.1063/1.2772198
23.
23. W. W. Tsai, Y. C. Chao, E. C. Chen, H. W. Zan, H. F. Meng, and C. S. Hsu, Appl. Phys. Lett. 95, 213308 (2009);
http://dx.doi.org/10.1063/1.3263144
23. L. Salamandra, G. Susanna, S. Penna, F. Brunetti, and A. Reale, IEEE Photonics Technol. Lett. 23, 780 (2011).
http://dx.doi.org/10.1109/LPT.2011.2124451
24.
24. H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 18402 (2010).
http://dx.doi.org/10.1021/ja108912x
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4762823
Loading
/content/aip/journal/apl/101/17/10.1063/1.4762823
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/17/10.1063/1.4762823
2012-10-22
2014-09-02

Abstract

We report that opaque electrodes can be used for high-performance organic optoelectronic devices, facilitated by the electric double layers (EDLs) formed in ionic liquids. For the photocell, gold/poly(3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-phenyl C butyric acid methyl ester (PCBM)/ionic liquid/silver, the EDLs enable a large photocurrent response, without the electrodes being superimposed. The external quantum efficiency and responsivity can reach 61.2% and 272 mA/W, respectively. The specific detectivity can reach 1.9 × 1013 Jones, which is larger than silicon-based detectors. This type of architecture will renew the operation principle and material choice for organic photocells, because transparency is no longer an indispensable condition for the electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/17/1.4762823.html;jsessionid=9os2hssfbglso.x-aip-live-03?itemId=/content/aip/journal/apl/101/17/10.1063/1.4762823&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric double layers allow for opaque electrodes in high performance organic optoelectronic devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4762823
10.1063/1.4762823
SEARCH_EXPAND_ITEM