1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electric double layers allow for opaque electrodes in high performance organic optoelectronic devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/17/10.1063/1.4762823
1.
1. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009);
http://dx.doi.org/10.1126/science.1176706
1. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007);
http://dx.doi.org/10.1126/science.1141711
1. P. Peumans, S. Uchida, and S. R. Forrest, Nature 425, 158 (2003).
http://dx.doi.org/10.1038/nature01949
2.
2. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007);
http://dx.doi.org/10.1021/cr050149z
2. K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
3.
3. C. G. Granqvist and A. Hultåker, Thin Solid Films 411, 1 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00163-3
4.
4. M. Helgesen, R. Søndergaard, and F. C. Krebs, J. Mater. Chem. 20, 36 (2010);
http://dx.doi.org/10.1039/b913168j
4. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).
http://dx.doi.org/10.1002/adfm.201002290
5.
5. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, Adv. Mater. 20, 4061 (2008);
http://dx.doi.org/10.1002/adma.200800338
5. Y. Zhou, H. Cheun, S. Choi, W. J. Potscavage, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 97, 153304 (2010).
http://dx.doi.org/10.1063/1.3499299
6.
6. L. G. D. Acro, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010);
http://dx.doi.org/10.1021/nn901587x
6. G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, Appl. Phys. Lett. 97, 213301 (2010).
http://dx.doi.org/10.1063/1.3514551
7.
7. H. E. Yin, C. F. Lee, and W. Y. Chiu, Polymer 52, 5065 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.08.044
8.
8. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 063302 (2009).
http://dx.doi.org/10.1063/1.3204698
9.
9. F. Bonaccorso, Z. Sun, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
10.
10. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 128, 7732 (2006);
http://dx.doi.org/10.1021/ja061714y
10. W. Lu, A. G. Fadeev, B. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Zhou, G. G. Wallace, D. R. MacFarlane, S. A. Forsyth, and M. Forsyth, Science 297, 983 (2002);
http://dx.doi.org/10.1126/science.1072651
10. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, J. Phys. Chem. B 110, 10228 (2006);
http://dx.doi.org/10.1021/jp0620872
10. C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, and M. Mastragostino, J. Power Sources 185, 1575 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2008.09.016
11.
11. H. von Helmholtz, Ann. Phys. Chem. 7, 337 (1879);
http://dx.doi.org/10.1002/andp.v243:7
11. H. Wang and L. Pilon, J. Phys. Chem. C 115, 16711 (2011).
http://dx.doi.org/10.1021/jp204498e
12.
12. B. Li, Y. Noda, L. Hu, H. Yoshikawa, M. M. Matsushita, and K. Awaga, Appl. Phys. Lett. 100, 163304 (2012).
http://dx.doi.org/10.1063/1.3697988
13.
13. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009).
http://dx.doi.org/10.1002/adfm.200801633
14.
14. Y. Xia, J. H. Cho, J. Lee, P. P. Ruden, and C. D. Frisbie, Adv. Mater. 21, 2174 (2009).
http://dx.doi.org/10.1002/adma.200803437
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4762823 for device fabrication, characterization, experimental setup, and surface morphology. [Supplementary Material]
16.
16. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 105, 2783 (2008);
http://dx.doi.org/10.1073/pnas.0711990105
16. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006);
http://dx.doi.org/10.1063/1.2174093
16. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).
http://dx.doi.org/10.1002/adma.201100038
17.
17. C. J. Ko, Y. K. Lin, F. C. Chen, and C. W. Chu, Appl. Phys. Lett. 90, 063509 (2007).
http://dx.doi.org/10.1063/1.2437703
18.
18. R. Misra, M. McCarthy, and A. F. Hebard, Appl. Phys. Lett. 90, 052905 (2007).
http://dx.doi.org/10.1063/1.2437663
19.
19. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010);
http://dx.doi.org/10.1002/adma.201001339
19. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, Nature Mater. 7, 158 (2008);
http://dx.doi.org/10.1038/nmat2102
19. H. Zhang and J. Ouyang, Org. Electron. 12, 1864 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.07.023
20.
20. A. Iwasaki, L. Hu, R. Suizu, K. Nomura, H. Yoshikawa, K. Awaga, Y. Noda, K. Kanai, Y. Ouchi, K. Seki, and H. Ito, Angew. Chem., Int. Ed. 48, 4022 (2009);
http://dx.doi.org/10.1002/anie.200900472
20. G. Zhang, W. Li, B. Chu, Z. Su, D. Yang, F. Yan, Y. Chen, D. Zhang, L. Han, J. Wang, H. Liu, G. Che, Z. Zhang, and Z. Hu, Org. Electron. 10, 352 (2009);
http://dx.doi.org/10.1016/j.orgel.2008.11.006
20. K. S. Narayan and T. B. Singh, Appl. Phys. Lett. 74, 3456 (1999);
http://dx.doi.org/10.1063/1.124126
20. G. A. O'Brien, A. J. Quinn, D. A. Tanner, and G. A. Redmond, Adv. Mater. 18, 2379 (2006).
http://dx.doi.org/10.1002/adma.v18:18
21.
21. A. R. Jha, Infrared Technology-Applications to Electro-Optics, Photonic Devices, and Sensors (John Wiley & Sons, New York, 2000), p. 245;
21. P. Bhattacharya, Semiconductor Optoelectronics Device (Prentice-Hall, Upper Saddle River, NJ, 1997), p. 345.
22.
22. S. Züfle, N. Christ, S. W. Kettlitz, S. Valouch, and U. Lemmer, Appl. Phys. Lett. 97, 063306 (2010);
http://dx.doi.org/10.1063/1.3473818
22. M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, Appl. Phys. Lett. 91, 071118 (2007).
http://dx.doi.org/10.1063/1.2772198
23.
23. W. W. Tsai, Y. C. Chao, E. C. Chen, H. W. Zan, H. F. Meng, and C. S. Hsu, Appl. Phys. Lett. 95, 213308 (2009);
http://dx.doi.org/10.1063/1.3263144
23. L. Salamandra, G. Susanna, S. Penna, F. Brunetti, and A. Reale, IEEE Photonics Technol. Lett. 23, 780 (2011).
http://dx.doi.org/10.1109/LPT.2011.2124451
24.
24. H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 18402 (2010).
http://dx.doi.org/10.1021/ja108912x
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4762823
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The device structure of metal (Au, Cu, Al)/P3HT:PCBM/DEME-TFSI/Ag. The equivalent circuit is also shown, in which the two are the capacitors formed at the interfaces, and the is the resistor of bulk DEME-TFSI. (b) The molecular structures of P3HT, PCBM, and DEME-TFSI. (c) Energy level diagram of the components in the devices.

Image of FIG. 2.

Click to view

FIG. 2.

The photoresponse of Metal (Au, Cu, Al)/P3HT:PCBM/ DEME-TFSI/Ag (black is Au, green is Cu, and blue is Al) photocells under illumination of a light-chopper-modulated 532 nm laser (3000 Hz) with a power density of 5 mW/cm2. The red curve shows the time dependence of the incident light power density.

Image of FIG. 3.

Click to view

FIG. 3.

(a) EQE (black line) and responsivity (red line) spectra of the Au/P3HT:PCBM/DEME-TFSI/Ag photocell obtained by irradiation with light-chopper-modulated monochromatic light from 400 nm to 800 nm (3000 Hz) without a bias voltage. (b) Specific detectivity spectrum (red), which is calculated from the responsivity and the absorption spectrum (black) of the P3HT:PCBM (1:1, by weight) blend film.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Impulse response of the Au/P3HT:PCBM/DEME-TFSI/Ag photocell under a zero bias voltage following a 1 ns laser pulse ( = 532 nm; beam diameter of 0.26 mm; pulse energy of 5 J). (b) Frequency response of the Au/P3HT:PCBM/DEME-TFSI/Ag photocell under a zero bias voltage following a modulated LED (central  = 525 nm; light spot diameter of 2 mm; LED power density of 3 mW/cm2) (black curve), and fast Fourier transformation of the impulse response (red curve).

Loading

Article metrics loading...

/content/aip/journal/apl/101/17/10.1063/1.4762823
2012-10-22
2014-04-18

Abstract

We report that opaque electrodes can be used for high-performance organic optoelectronic devices, facilitated by the electric double layers (EDLs) formed in ionic liquids. For the photocell, gold/poly(3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-phenyl C butyric acid methyl ester (PCBM)/ionic liquid/silver, the EDLs enable a large photocurrent response, without the electrodes being superimposed. The external quantum efficiency and responsivity can reach 61.2% and 272 mA/W, respectively. The specific detectivity can reach 1.9 × 1013 Jones, which is larger than silicon-based detectors. This type of architecture will renew the operation principle and material choice for organic photocells, because transparency is no longer an indispensable condition for the electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/17/1.4762823.html;jsessionid=30tubc61igogo.x-aip-live-02?itemId=/content/aip/journal/apl/101/17/10.1063/1.4762823&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric double layers allow for opaque electrodes in high performance organic optoelectronic devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/17/10.1063/1.4762823
10.1063/1.4762823
SEARCH_EXPAND_ITEM