NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. S. Ong, Y. L. Wu, Y. N. Li, P. Liu, and H. L. Pan, Chem.-Eur. J. 14, 4766 (2008).
2. M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
3. M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo, and T. N. Jackson, J. Am. Chem. Soc. 127, 4986 (2005);
3. J. E. Anthony, D. L. Eaton, and S. R. Parkin, Org. Lett. 4, 15 (2002);
3. S. Subramanisan, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, and J. E. Anthony, J. Am. Chem. Soc. 130, 2706 (2008).
4. J. Chen and Y. Cao, Acc. Chem. Res. 42, 1709 (2009);
4. Y. J. Cheng, S.-H. Yang, and C.-S. Hsu, Chem. Rev. 109, 5868 (2009).
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995);
5. B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed. 47, 58 (2008).
6. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
7. M. Gross, D. C. Muller, H. G. Nothofer, U. Scherf, D. Neher, C. Brauchle, and K. Meerholz, Nature 405, 661 (2000).
8. C. Reese and Z. Bao, Mater. Today 10, 20 (2007).
9. L. B. Roberson, J. Am. Chem. Soc. 127, 3069 (2005).
10. V. Podzorov, Phys. Rev. Lett. 93, 086602 (2004).
11. J. Jang, S. Nam, K. Im, J. Hur, S. N. Cha, J. Kim, H. B. Son, H. Suh, M. A. Loth, J. E. Anthony, J.-J. Park, C. E. Park, J. M. Kim, and K. Kim, Adv. Funct. Mater. 22, 1005 (2012).
12. O. D. Jurchescu, S. Subramanian, R. J. Kline, S. D. Hudson, J. E. Anthony, T. N. Jackson, and D. J. Gundlach, Chem. Mater. 20, 6733 (2008).
13. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature 475, 364 (2011).
14. H. Jiang, K. J. Tan, K. K. Zhang, X. Chen, and C. Kloc, J. Mater. Chem. 21, 4771 (2011).
15. S. Haas, Y. Takahashi, K. Takimiya, and T. Hasegawa, Appl. Phys. Lett. 95, 022111 (2009).
16. M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, and C. Rovira, J. Am. Chem. Soc. 126, 984 (2004);
16. M. Mas-Torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarres, M. Mas, E. Molins, J. Veciana, and C. Rovira, J. Am. Chem. Soc. 126, 8546 (2004).
17. Y.-H. Kim, B. Yoo, J. E. Anthony, and S. K. Park, Adv. Mater. 24, 497 (2012).
18. Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, and T. Takenobu, Adv. Mater. 24, 4392 (2012).
19. X. Zhang, J. Jie, W. Zhang, C. Zhang, L. Luo, Z. He, X. Zhang, W. Zhang, C. Lee, and S. Lee, Adv. Mater. 20, 2427 (2008).
20. Y. Zhou, L. Wang, J. Wang, J. Pei, and Y. Cao, Adv. Mater. 20, 3745 (2008);
20. Y. Zhou, T. Lei, L. Wang, J. Pei, Y. Cao, and J. Wang, Adv. Mater. 22, 1484 (2010).
21. T. He, X. Zhang, J. Jia, Y. Li, and X. Tao, Adv. Mater. 24, 2171 (2012).
22. L. Jiang, W. Hu, Z. Wei, W. Xu, and H. Meng, Adv. Mater. 21, 3649 (2009).
23. Md. M. Islam, F. Valiyev, H.-F. Lu, M.-Y. Kuo, I. Chao, and Y.-T. Tao, Chem. Commun. 47, 2008 (2011).
24. V. Wagner, P. Wobkenberg, A. Hoppe, and J. Seekamp, Appl. Phys. Lett. 89, 243515 (2006).
25. J. H. Park, D. S. Chung, J. W. Park, T. Ahn, H. Kong, Y. K. Jung, J. Lee, M. H. Yi, C. E. Park, S. K. Kwon, and H. K. Shim, Org. Lett. 9, 2573 (2007);
25. D. S. Chung, J. W. Park, J. H. Park, G. H. Kim, H. S. Lee, D. H. Lee, H. K. Shim, S. K. Kwon, and C. E. Park, J. Mater. Chem. 20, 524 (2010).
26. Y. M. Park, J. Daniel, M. Heeney, and A. Salleo, Adv. Mater. 23, 971 (2011).
27. S. H. Kim, M. Jang, H. Yang, J. E. Anthony, and C. E. Park, Adv. Func. Mater. 21, 2198 (2011).
28. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
29. Z. Bao and J. Locklin, Organic Field-Effect Transistors (CRC, New York, 2006).
30. G. M. Khattak and C. G. Scott, J. Phys.: Condens. Matter. 3, 8619 (1991).
31. G. Konstantatos and E H. Sargent, Proc. IEEE 97, 1666 (2009).
32. X. Gong, M. H. Tong, Y. J. Xia, W. Z. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).

Data & Media loading...


Article metrics loading...



A high-quality organic single crystal transistor (OSCT) was fabricated via solution-processing using a novel anthracene derivative (TIPsAntNE). The OSCT fabricated on a surface-modified high-capacitance ZrO substrate provided a transistor that operated at low voltages with a high mobility up to 4.1 cm2/Vs and negligible hysteresis (a V shift of <20 mV). Importantly, the TIPsAntNE OSCT functioned under a high-frequency AC signal with a gate bias as high as 30 kHz. These are crucial operational requirements for commercial applications of organic transistors. The photoresponsivity (>1 A/W) of the TIPsAntNE single crystal was high over a wide range across the visible spectrum.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative