1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/19/10.1063/1.4764062
1.
1. B. S. Ong, Y. L. Wu, Y. N. Li, P. Liu, and H. L. Pan, Chem.-Eur. J. 14, 4766 (2008).
http://dx.doi.org/10.1002/chem.200701717
2.
2. M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
3.
3. M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo, and T. N. Jackson, J. Am. Chem. Soc. 127, 4986 (2005);
http://dx.doi.org/10.1021/ja042353u
3. J. E. Anthony, D. L. Eaton, and S. R. Parkin, Org. Lett. 4, 15 (2002);
http://dx.doi.org/10.1021/ol0167356
3. S. Subramanisan, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, and J. E. Anthony, J. Am. Chem. Soc. 130, 2706 (2008).
http://dx.doi.org/10.1021/ja073235k
4.
4. J. Chen and Y. Cao, Acc. Chem. Res. 42, 1709 (2009);
http://dx.doi.org/10.1021/ar900061z
4. Y. J. Cheng, S.-H. Yang, and C.-S. Hsu, Chem. Rev. 109, 5868 (2009).
http://dx.doi.org/10.1021/cr900182s
5.
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995);
http://dx.doi.org/10.1126/science.270.5243.1789
5. B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed. 47, 58 (2008).
http://dx.doi.org/10.1002/anie.v47:1
6.
6. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
7.
7. M. Gross, D. C. Muller, H. G. Nothofer, U. Scherf, D. Neher, C. Brauchle, and K. Meerholz, Nature 405, 661 (2000).
http://dx.doi.org/10.1038/35015037
8.
8. C. Reese and Z. Bao, Mater. Today 10, 20 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70016-0
9.
9. L. B. Roberson, J. Am. Chem. Soc. 127, 3069 (2005).
http://dx.doi.org/10.1021/ja044586r
10.
10. V. Podzorov, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
11.
11. J. Jang, S. Nam, K. Im, J. Hur, S. N. Cha, J. Kim, H. B. Son, H. Suh, M. A. Loth, J. E. Anthony, J.-J. Park, C. E. Park, J. M. Kim, and K. Kim, Adv. Funct. Mater. 22, 1005 (2012).
http://dx.doi.org/10.1002/adfm.201102284
12.
12. O. D. Jurchescu, S. Subramanian, R. J. Kline, S. D. Hudson, J. E. Anthony, T. N. Jackson, and D. J. Gundlach, Chem. Mater. 20, 6733 (2008).
http://dx.doi.org/10.1021/cm8021165
13.
13. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
14.
14. H. Jiang, K. J. Tan, K. K. Zhang, X. Chen, and C. Kloc, J. Mater. Chem. 21, 4771 (2011).
http://dx.doi.org/10.1039/c0jm04383d
15.
15. S. Haas, Y. Takahashi, K. Takimiya, and T. Hasegawa, Appl. Phys. Lett. 95, 022111 (2009).
http://dx.doi.org/10.1063/1.3183509
16.
16. M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, and C. Rovira, J. Am. Chem. Soc. 126, 984 (2004);
http://dx.doi.org/10.1021/ja0393933
16. M. Mas-Torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarres, M. Mas, E. Molins, J. Veciana, and C. Rovira, J. Am. Chem. Soc. 126, 8546 (2004).
http://dx.doi.org/10.1021/ja048342i
17.
17. Y.-H. Kim, B. Yoo, J. E. Anthony, and S. K. Park, Adv. Mater. 24, 497 (2012).
http://dx.doi.org/10.1002/adma.201103032
18.
18. Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, and T. Takenobu, Adv. Mater. 24, 4392 (2012).
http://dx.doi.org/10.1002/adma.201200655
19.
19. X. Zhang, J. Jie, W. Zhang, C. Zhang, L. Luo, Z. He, X. Zhang, W. Zhang, C. Lee, and S. Lee, Adv. Mater. 20, 2427 (2008).
http://dx.doi.org/10.1002/adma.200800351
20.
20. Y. Zhou, L. Wang, J. Wang, J. Pei, and Y. Cao, Adv. Mater. 20, 3745 (2008);
http://dx.doi.org/10.1002/adma.200800336
20. Y. Zhou, T. Lei, L. Wang, J. Pei, Y. Cao, and J. Wang, Adv. Mater. 22, 1484 (2010).
http://dx.doi.org/10.1002/adma.200904171
21.
21. T. He, X. Zhang, J. Jia, Y. Li, and X. Tao, Adv. Mater. 24, 2171 (2012).
http://dx.doi.org/10.1002/adma.201200525
22.
22. L. Jiang, W. Hu, Z. Wei, W. Xu, and H. Meng, Adv. Mater. 21, 3649 (2009).
http://dx.doi.org/10.1002/adma.200900503
23.
23. Md. M. Islam, F. Valiyev, H.-F. Lu, M.-Y. Kuo, I. Chao, and Y.-T. Tao, Chem. Commun. 47, 2008 (2011).
http://dx.doi.org/10.1039/c0cc04773b
24.
24. V. Wagner, P. Wobkenberg, A. Hoppe, and J. Seekamp, Appl. Phys. Lett. 89, 243515 (2006).
http://dx.doi.org/10.1063/1.2405414
25.
25. J. H. Park, D. S. Chung, J. W. Park, T. Ahn, H. Kong, Y. K. Jung, J. Lee, M. H. Yi, C. E. Park, S. K. Kwon, and H. K. Shim, Org. Lett. 9, 2573 (2007);
http://dx.doi.org/10.1021/ol071135d
25. D. S. Chung, J. W. Park, J. H. Park, G. H. Kim, H. S. Lee, D. H. Lee, H. K. Shim, S. K. Kwon, and C. E. Park, J. Mater. Chem. 20, 524 (2010).
http://dx.doi.org/10.1039/b910226d
26.
26. Y. M. Park, J. Daniel, M. Heeney, and A. Salleo, Adv. Mater. 23, 971 (2011).
http://dx.doi.org/10.1002/adma.201003641
27.
27. S. H. Kim, M. Jang, H. Yang, J. E. Anthony, and C. E. Park, Adv. Func. Mater. 21, 2198 (2011).
http://dx.doi.org/10.1002/adfm.201002054
28.
28. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
29.
29. Z. Bao and J. Locklin, Organic Field-Effect Transistors (CRC, New York, 2006).
30.
30. G. M. Khattak and C. G. Scott, J. Phys.: Condens. Matter. 3, 8619 (1991).
http://dx.doi.org/10.1088/0953-8984/3/44/008
31.
31. G. Konstantatos and E H. Sargent, Proc. IEEE 97, 1666 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2025612
32.
32. X. Gong, M. H. Tong, Y. J. Xia, W. Z. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).
http://dx.doi.org/10.1126/science.1176706
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4764062
Loading
/content/aip/journal/apl/101/19/10.1063/1.4764062
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/19/10.1063/1.4764062
2012-11-06
2014-10-25

Abstract

A high-quality organic single crystal transistor (OSCT) was fabricated via solution-processing using a novel anthracene derivative (TIPsAntNE). The OSCT fabricated on a surface-modified high-capacitance ZrO substrate provided a transistor that operated at low voltages with a high mobility up to 4.1 cm2/Vs and negligible hysteresis (a V shift of <20 mV). Importantly, the TIPsAntNE OSCT functioned under a high-frequency AC signal with a gate bias as high as 30 kHz. These are crucial operational requirements for commercial applications of organic transistors. The photoresponsivity (>1 A/W) of the TIPsAntNE single crystal was high over a wide range across the visible spectrum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/19/1.4764062.html;jsessionid=7kokpfnq9c1fh.x-aip-live-06?itemId=/content/aip/journal/apl/101/19/10.1063/1.4764062&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4764062
10.1063/1.4764062
SEARCH_EXPAND_ITEM