1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/19/10.1063/1.4765343
1.
1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 20, 12 (2012).
http://dx.doi.org/10.1002/pip.2163
2.
2. A. Hauch, P. Schilinski, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Sol. Energy Mater. Sol. Cells 92, 727 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.004
3.
3. C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupre, M. Leclerc, and M. D. McGehee, Adv. Energy Mater. 1, 491 (2011).
http://dx.doi.org/10.1002/aenm.201100138
4.
4. C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Adv. Mater. 19, 3973 (2007).
http://dx.doi.org/10.1002/adma.200700911
5.
5. C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, Nano Lett. 8, 2806 (2008).
http://dx.doi.org/10.1021/nl801365k
6.
6. C. N. Hoth, R. Steim, P. Schilinsky, S. A. Choulis, S. F. Tedde, O. Hayden, and C. J. Brabec, Org. Electron. 10, 587 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.010
7.
7. M. Neophytou, W. Cambarau, F. Hermerschmidt, C. Waldauf, C. Christodoulou, R. Pacios, and S. A. Choulis, Microelectron. Eng. 95, 102 (2012).
http://dx.doi.org/10.1016/j.mee.2012.02.005
8.
8. M. M. Voigt, R. C. I. Mackenzie, C. P. Yau, P. Atienzar, J. Dane, P. E. Keivanidis, D. D. C. Bradley, and J. Nelson, Sol. Energy Mater. Sol. Cells 95, 731 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.10.013
9.
9. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
10.
10. C. J. M. Emmot, A. Urbina, and J. Nelson, Sol. Energy Mater. Sol. Cells 97, 14 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.024
11.
11. D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).
http://dx.doi.org/10.1002/adma.201003188
12.
12. A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater. 10, 859 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199808)10:11<859::AID-ADMA859>3.0.CO;2-1
13.
13. M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, Adv. Mater. 20, 4408 (2008).
http://dx.doi.org/10.1002/adma.200800750
14.
14. A. A. Green and M. C. Hersam, Nano Lett. 8, 1417 (2008).
http://dx.doi.org/10.1021/nl080302f
15.
15. J. L. Blackburn, T. M. Barns, M. C. Beared, Y. Kim, R. C. Tenent, T. J. McDonald, B. To, T. J. Coutts, and M. J. Heben, ACS Nano 2, 1266 (2008).
http://dx.doi.org/10.1021/nn800200d
16.
16. L. G. de Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, ACS Nano 4, 2865 (2010).
http://dx.doi.org/10.1021/nn901587x
17.
17. C. H. Y. X. Lim, Y. L. Zhong, S. Janssens, M. Nesladek, and K. P. Loh, Adv. Funct. Mater. 20, 1313 (2010).
http://dx.doi.org/10.1002/adfm.200902204
18.
18. T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen, and L. Leenders, Thin Solid Films 451, 22 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.038
19.
19. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, Adv. Mater. 20, 4061 (2008).
http://dx.doi.org/10.1002/adma.200800338
20.
20. J. Huang, X. Wang, Y. Kim, A. J. de Mello, D. D. C. Bradley, and J. C. de Mello, Phys. Chem. Chem. Phys. 8, 3904 (2006).
http://dx.doi.org/10.1039/b607016g
21.
21. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, Adv. Funct. Mater. 22, 1454 (2012).
http://dx.doi.org/10.1002/adfm.201101787
22.
22. Y. Galagan, B. Zimmermann, E. W. C. Coenen, M. Jørgensen, D. M. Tanenbaum, F. C. Krebs, H. Gorter, S. Sabik, L. H. Slooff, S. C. Veenstra, J. M. Kroon, and R. Andriessen, Adv. Energy Mater. 2, 103 (2012).
http://dx.doi.org/10.1002/aenm.201100552
23.
23. M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, and S. Magdassi, ACS Nano 3, 3537 (2009).
http://dx.doi.org/10.1021/nn901239z
24.
24. Y. Jang, J. Jo, and D. S. Kim, J. Polym. Sci., Part B: Polym. Phys. 49, 1590 (2011).
http://dx.doi.org/10.1002/polb.22347
25.
25. A. Cheknane, Prog. Photovoltaics 19, 155 (2011).
http://dx.doi.org/10.1002/pip.1000
26.
26. U. Lang, E. Muller, N. Naujoks, and J. Dual, Adv. Funct. Mater. 19, 1215 (2009).
http://dx.doi.org/10.1002/adfm.200801258
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4765343
Loading
/content/aip/journal/apl/101/19/10.1063/1.4765343
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/19/10.1063/1.4765343
2012-11-05
2014-12-21

Abstract

We report an in-depth investigation of an inkjet-printed silver (Ag) nanoparticle grid combined with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) of different conductivities as an alternative to an indium tin oxide (ITO)-based transparent anode for organic solar cell applications. The reported measurements revealed higher transparency of the inkjet-printed Ag nanoparticle-based grid when compared to different thicknesses of ITO on glass substrates. Based on the proposed current collecting grid, a record power conversion efficiency of 2% is achieved for ITO-free organic solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/19/1.4765343.html;jsessionid=4r251tl5hq8rr.x-aip-live-02?itemId=/content/aip/journal/apl/101/19/10.1063/1.4765343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4765343
10.1063/1.4765343
SEARCH_EXPAND_ITEM