1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/19/10.1063/1.4765343
1.
1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 20, 12 (2012).
http://dx.doi.org/10.1002/pip.2163
2.
2. A. Hauch, P. Schilinski, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Sol. Energy Mater. Sol. Cells 92, 727 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.004
3.
3. C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupre, M. Leclerc, and M. D. McGehee, Adv. Energy Mater. 1, 491 (2011).
http://dx.doi.org/10.1002/aenm.201100138
4.
4. C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Adv. Mater. 19, 3973 (2007).
http://dx.doi.org/10.1002/adma.200700911
5.
5. C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, Nano Lett. 8, 2806 (2008).
http://dx.doi.org/10.1021/nl801365k
6.
6. C. N. Hoth, R. Steim, P. Schilinsky, S. A. Choulis, S. F. Tedde, O. Hayden, and C. J. Brabec, Org. Electron. 10, 587 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.010
7.
7. M. Neophytou, W. Cambarau, F. Hermerschmidt, C. Waldauf, C. Christodoulou, R. Pacios, and S. A. Choulis, Microelectron. Eng. 95, 102 (2012).
http://dx.doi.org/10.1016/j.mee.2012.02.005
8.
8. M. M. Voigt, R. C. I. Mackenzie, C. P. Yau, P. Atienzar, J. Dane, P. E. Keivanidis, D. D. C. Bradley, and J. Nelson, Sol. Energy Mater. Sol. Cells 95, 731 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.10.013
9.
9. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
10.
10. C. J. M. Emmot, A. Urbina, and J. Nelson, Sol. Energy Mater. Sol. Cells 97, 14 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.024
11.
11. D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).
http://dx.doi.org/10.1002/adma.201003188
12.
12. A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater. 10, 859 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199808)10:11<859::AID-ADMA859>3.0.CO;2-1
13.
13. M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, Adv. Mater. 20, 4408 (2008).
http://dx.doi.org/10.1002/adma.200800750
14.
14. A. A. Green and M. C. Hersam, Nano Lett. 8, 1417 (2008).
http://dx.doi.org/10.1021/nl080302f
15.
15. J. L. Blackburn, T. M. Barns, M. C. Beared, Y. Kim, R. C. Tenent, T. J. McDonald, B. To, T. J. Coutts, and M. J. Heben, ACS Nano 2, 1266 (2008).
http://dx.doi.org/10.1021/nn800200d
16.
16. L. G. de Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, ACS Nano 4, 2865 (2010).
http://dx.doi.org/10.1021/nn901587x
17.
17. C. H. Y. X. Lim, Y. L. Zhong, S. Janssens, M. Nesladek, and K. P. Loh, Adv. Funct. Mater. 20, 1313 (2010).
http://dx.doi.org/10.1002/adfm.200902204
18.
18. T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen, and L. Leenders, Thin Solid Films 451, 22 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.038
19.
19. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, Adv. Mater. 20, 4061 (2008).
http://dx.doi.org/10.1002/adma.200800338
20.
20. J. Huang, X. Wang, Y. Kim, A. J. de Mello, D. D. C. Bradley, and J. C. de Mello, Phys. Chem. Chem. Phys. 8, 3904 (2006).
http://dx.doi.org/10.1039/b607016g
21.
21. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, Adv. Funct. Mater. 22, 1454 (2012).
http://dx.doi.org/10.1002/adfm.201101787
22.
22. Y. Galagan, B. Zimmermann, E. W. C. Coenen, M. Jørgensen, D. M. Tanenbaum, F. C. Krebs, H. Gorter, S. Sabik, L. H. Slooff, S. C. Veenstra, J. M. Kroon, and R. Andriessen, Adv. Energy Mater. 2, 103 (2012).
http://dx.doi.org/10.1002/aenm.201100552
23.
23. M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, and S. Magdassi, ACS Nano 3, 3537 (2009).
http://dx.doi.org/10.1021/nn901239z
24.
24. Y. Jang, J. Jo, and D. S. Kim, J. Polym. Sci., Part B: Polym. Phys. 49, 1590 (2011).
http://dx.doi.org/10.1002/polb.22347
25.
25. A. Cheknane, Prog. Photovoltaics 19, 155 (2011).
http://dx.doi.org/10.1002/pip.1000
26.
26. U. Lang, E. Muller, N. Naujoks, and J. Dual, Adv. Funct. Mater. 19, 1215 (2009).
http://dx.doi.org/10.1002/adfm.200801258
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4765343
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Representation of ITO-free device structure. The silver grid lines (grey) are deposited onto a glass substrate, followed by PEDOT:PSS (blue) and the active layer (red). The Al cathode (black) is thermally evaporated on top.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Surface mapping image showing micron-sized bubbles formed on deposited grid lines where the solvent has not evaporated sufficiently. (b) Surface mapping image of an optimized printed line. The overall height of the line is in the region of 190–210 nm, with the spike-type shapes showing as more prominent points.

Image of FIG. 3.

Click to view

FIG. 3.

Optical transmittance of glass substrates with various surface coverings. The transmittance of the Ag grid lines was compared to 100 nm and 450 nm of ITO coverage as well as a reference. Both grid line widths provide >90% transmittance. P3HT:PCBM absorbance is included for comparison (open circles).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Effect of PEDOT:PSS conductivity on device performance in dark conditions. PEDOT:PSS with 0.002 S/cm conductivity (blue circles) exhibited higher R mainly due to the higher PSS concentration. When compared to the reference structure (black triangles), both devices showed high carrier injection at negative and low positive bias, which is most likely caused by spike-like shapes in the printed line. (b) Effect of PEDOT:PSS conductivity on device performance in light conditions. Despite the fact that loss mechanisms dominated device performance for both ITO-free architectures, a PCE of 1.96% was achieved.

Tables

Generic image for table

Click to view

Table I.

Photovoltaic parameters of devices using inkjet-printed silver (Ag) nanoparticle grid combined with alternative PEDOT:PSS anodes and reference ITO-based organic solar cells for comparison.

Loading

Article metrics loading...

/content/aip/journal/apl/101/19/10.1063/1.4765343
2012-11-05
2014-04-23

Abstract

We report an in-depth investigation of an inkjet-printed silver (Ag) nanoparticle grid combined with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) of different conductivities as an alternative to an indium tin oxide (ITO)-based transparent anode for organic solar cell applications. The reported measurements revealed higher transparency of the inkjet-printed Ag nanoparticle-based grid when compared to different thicknesses of ITO on glass substrates. Based on the proposed current collecting grid, a record power conversion efficiency of 2% is achieved for ITO-free organic solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/19/1.4765343.html;jsessionid=xpmn08as0xks.x-aip-live-01?itemId=/content/aip/journal/apl/101/19/10.1063/1.4765343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4765343
10.1063/1.4765343
SEARCH_EXPAND_ITEM