1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Electrophoretic deposition onto an insulator for thin film preparation toward electronic device fabrication
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/19/10.1063/1.4766126
1.
1. L. Besra and M. Liu, Prog. Mater. Sci. 52, 1 (2007).
http://dx.doi.org/10.1016/j.pmatsci.2006.07.001
2.
2. P. V. Kamat, S. Barazzouk, K. G. Thomas, and S. Hotchandani, J. Phys. Chem. B 104, 4014 (2000).
http://dx.doi.org/10.1021/jp000750v
3.
3. K. Tada and M. Onoda, Sol. Energy Mater. Sol. Cells 95, 688 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.10.003
4.
4. K. Tada and M. Onoda, J. Phys. D: Appl. Phys. 41, 032001 (2008).
http://dx.doi.org/10.1088/0022-3727/41/3/032001
5.
5. C. Dhand, S. K. Arya, M. Datta, and B. D. Malhotra, Anal. Biochem. 383, 194 (2008).
http://dx.doi.org/10.1016/j.ab.2008.08.039
6.
6. K. Tada and M. Onoda, J. Phys. D: Appl. Phys. 42, 172001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/17/172001
7.
7. S. A. Hasan, D. W. Kavich, S. V. Mahajan, and J. H. Dickerson, Thin Solid Films. 517, 2665 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.10.122
8.
8. J.-F. Chang, B. W. Sun, D. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, and H. Sirringhaus, Chem. Mater. 16, 4772 (2004).
http://dx.doi.org/10.1021/cm049617w
9.
9. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
http://dx.doi.org/10.1063/1.117834
10.
10. M. Surin, Ph. Leclère, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, S. Cho, and K. Lee, J. Appl. Phys. 100, 033712 (2006).
http://dx.doi.org/10.1063/1.2222065
11.
11. B. G. Kim, M. S. Kim, and J. Kim, ACS Nano. 4, 2160 (2010).
http://dx.doi.org/10.1021/nn901568w
12.
12. H. Xin, F. S. Kim, and S. A. Jenekhe, J. Am. Chem. Soc. 130, 5424 (2008).
http://dx.doi.org/10.1021/ja800411b
13.
13. M. A. Islam and I. P. Herman, Appl. Phys. Lett. 80, 3823 (2002).
http://dx.doi.org/10.1063/1.1480878
14.
14. S. Grecu, M. Roggenbuck, A. Optiz, and W. Brütting, Org. Electron. 7, 276 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.03.005
15.
15. K. Tada and M. Onoda, Synth. Met. 152, 341 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.07.265
16.
16. S. D. D. V. Rughoopath, S. Hotta, A. J. Heeger, and F. J. Wudl, J. Polym. Sci., Part B: Polym. Phys. 25, 1071 (1987).
http://dx.doi.org/10.1002/polb.1987.090250508
17.
17. S. Malik, T. Jana, and A. K. Nandi, Macromolecules 34, 275 (2001).
http://dx.doi.org/10.1021/ma000977o
18.
18. P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B 67, 064203 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064203
19.
19. C.-Y. Chen, S.-H. Chan, J.-Y. Li, K.-H. Wu, H.-L. Chen, J.-H. Chen, W.-Y. Huang, and S.-A. Chen, Macromolecules 43, 7305 (2010).
http://dx.doi.org/10.1021/ma1008034
20.
20. C. Yang, F. P. Orfino, and S. Holdcroft, Macromolecules 29, 6510 (1996).
http://dx.doi.org/10.1021/ma9604799
21.
21. S. Nagamatsu, T. Moriguchi, T. Nagase, S. Oku, K. Kuramoto, W. Takashima, T. Okauchi, K. Mizoguchi, S. Hayase, and K. Kaneto, Appl. Phys. Express 2, 101502 (2009).
http://dx.doi.org/10.1143/APEX.2.101502
22.
22. K. Kaneto, W. Y. Lim, W. Takashima, T. Endo, and M. Rikukawa, Jpn. J. Appl. Phys., Part 2 39, L872 (2000).
http://dx.doi.org/10.1143/JJAP.39.L872
23.
23. S. Pratontep, M. Brinkmann, and F. Nuesch, Phys. Rev. B 69, 165201 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165201
24.
24. R. J. Kline, M. D. McGehee, and M. F. Tony, Nat. Mater. 5, 222 (2006).
http://dx.doi.org/10.1038/nmat1590
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4766126 for confirming the trade off relationships between crystallinity and uniformity of the EPD film. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4766126
Loading
/content/aip/journal/apl/101/19/10.1063/1.4766126
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/19/10.1063/1.4766126
2012-11-07
2014-12-18

Abstract

An electrostatic film fabrication method utilizing the dielectric layer, entitled dielectric barrier electrophoretic deposition (DBEPD) has been proposed. We demonstrated the fabrication of uniform organic semiconductor thin film onto any kind of substrate by DBEPD. Optical absorption spectra of colloidal poly(3-hexylthiophene) (P3HT) film prepared by DBEPD exhibited the clear vibrational structure attributed to highly ordered domains. It was in contrast to the relatively disordered structure as shown in the case of P3HT film prepared by conventional electrophoretic deposition (EPD). Organic field effect transistors fabricated by each method showed similar organic field effect transistor characteristics, however, the uniformity of DBEPD film was superior to EPD film.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/19/1.4766126.html;jsessionid=560bfgmqp0uq1.x-aip-live-03?itemId=/content/aip/journal/apl/101/19/10.1063/1.4766126&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrophoretic deposition onto an insulator for thin film preparation toward electronic device fabrication
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/19/10.1063/1.4766126
10.1063/1.4766126
SEARCH_EXPAND_ITEM