1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Tetrathiofulvalene and tetracyanoquinodimethane crystals: Conducting surface versus interface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/2/10.1063/1.4731244
1.
1. M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, and V. Podzorov, Nature Mater. 7(1), 8489 (2008).
http://dx.doi.org/10.1038/nmat2059
2.
2. O. Khatib, B. Lee, Z. Q. Lee, M. Di Ventra, A. J. Heeger, V. Podzorov, and D. N. Basov, J. Appl. Phys. 107(12), 123702 (2010).
http://dx.doi.org/10.1063/1.3436567
3.
3. R. M. Gadiev, A. N. Lachinov, R. B. Salikhov, R. G. Rakhmeev, V. M. Kornilov, and A. R. Yusupov, Appl. Phys. Lett. 98(17), 173305 (2011).
http://dx.doi.org/10.1063/1.3584135
4.
4. H. Alves, A. S. Molinari, H. Xie, and A. F. Morpurgo, Nature Mater. 7(7), 57480 (2008).
http://dx.doi.org/10.1038/nmat2205
5.
5. M. Nakano, H. Alves, A. S. Molinari, S. Ono, N. Minder, and A. F. Morpurgo, Appl. Phys. Lett. 96(23), 232102 (2010).
http://dx.doi.org/10.1063/1.3449558
6.
6. M. Sing, U. Schwingenschlögl, R. Claessen, P. Blaha, J. M. P. Carmelo, L. M. Martelo, P. D. Sacramento, M. Dressel, and C. S. Jacobsen, Phys. Rev. B 68(12), 125111 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125111
7.
7. T. Sumimoto, Y. Shiratori, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Tanaka, Synth. Met. 86(1–3), 22592260 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)81117-4
8.
8. R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, J. Cryst. Growth 187(3–4), 449454 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00034-7
9.
9. W. L. Kalb, T. Mathis, S. Haas, S. A. Strass, and B. Batlogg, Appl. Phys. Lett. 90(09), 092104 (2007).
http://dx.doi.org/10.1063/1.2709894
10.
10. T. Minato, H. Aoki, H. Fukidome, T. Wagner, and K. Itaya, Appl. Phys. Lett. 95(09), 093302 (2009).
http://dx.doi.org/10.1063/1.3184770
11.
11. H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, W. Hu, Y. Liu, and D. Zhu, Appl. Phys. Lett. 91(12), 123505 (2007).
http://dx.doi.org/10.1063/1.2784970
12.
12. H. Najafov, D. Mastrogiovanni, E. Garfunkel, L. C. Feldmann, and V. Podzorov, Adv. Mater. 23(9), 981985 (2011).
http://dx.doi.org/10.1002/adma.201004239
13.
13. C. Goldmann, D. J. Gundlach, and B. Batlogg, Appl. Phys. Lett. 88(06), 063501 (2006).
http://dx.doi.org/10.1063/1.2171479
14.
14. T. J. Kistenmacher, T. E. Phillips, and D. O. Cowan, Acta Crystallogr. B 30(3), 763768 (1974).
http://dx.doi.org/10.1107/S0567740874003669
15.
15. J. I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York, 2003).
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4731244
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The conductivity of TCNQ crystals increases by orders of magnitude when TTF molecules are deposited from the gas phase. The surface coverage is faster when the TTF source is kept at higher temperatures and when the flowing Ar gas transports the sublimated TTF molecules towards the TCNQ crystal red upper curve, compared to crystals placed next to each other at room temperature without gas flow (black lower curve).

Image of FIG. 2.

Click to view

FIG. 2.

Several pairs of TTF and TCNQ crystals are brought into mechanical contact at room temperature. The increase of the TCNQ crystal surface conductivity is not instantaneous and differences are ascribed to variations in the crystals’ surface roughness. Inset shows one graph on a linear scale to display more clearly the non instantaneous increase in conductivity.

Image of FIG. 3.

Click to view

FIG. 3.

Three pairs of TTF and TCNQ crystals are laminated at 250 K. The surface conductivity is initially not affected but increases at an increased rate when the temperature is raised in 10 K steps (indicated by arrows) to room temperature. This dynamics suggests transfer of TTF molecules by sublimation.

Image of FIG. 4.

Click to view

FIG. 4.

A TTF crystal (outlined in pink) placed on top a TCNQ crystal fully sublimates in two weeks. (1 bar He atmosphere, no UV light).

Image of FIG. 5.

Click to view

FIG. 5.

Experimental evidence of TTF molecule deposition onto the TCNQ crystal surface by sublimation. SEM image of a TCNQ crystal with evaporated gold electrodes (light gray) and conductive silver paste at both ends. The dashed orange outline indicates the area where the TTF crystal was laminated onto the TCNQ crystal for 58 h and was then removed. The orange framed area is the remains of the TTF crystal. The lower graph shows the counts for sulfur (specific to TTF) from the EDX spectrum taken along the green line. The vertical pink dashed lines indicate the edge of the former laminated area. Most significant is the presence of TTF outside the area of contact, indicated by arrows.

Loading

Article metrics loading...

/content/aip/journal/apl/101/2/10.1063/1.4731244
2012-07-10
2014-04-25

Abstract

When a tetrathiofulvalene (TTF) crystal is placed onto a 7,7,8,8‐tetracyanoquinodimethane (TCNQ) crystal at room temperature, a highly conducting layer is formed. In this study, we explore to what degree this is due to physical contact or transfer by sublimation of one species onto the other crystal. We have performed a variety of time‐dependent surface conductivity measurements, including TTF lamination on TCNQ at room temperature and low temperatures, as well as deposition of TTF molecules from the gas phase. Crystal-to-crystal contact insignificantly modifies material conductivity while TTF sublimation onto TCNQ is shown to dominate electronic modification.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/2/1.4731244.html;jsessionid=1urqhid561u1b.x-aip-live-01?itemId=/content/aip/journal/apl/101/2/10.1063/1.4731244&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tetrathiofulvalene and tetracyanoquinodimethane crystals: Conducting surface versus interface
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4731244
10.1063/1.4731244
SEARCH_EXPAND_ITEM