1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/2/10.1063/1.4735002
1.
1. K. Q. Peng and S. T. Lee, Adv. Mater. 23, 198 (2011).
http://dx.doi.org/10.1002/adma.201002410
2.
2. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett. 9, 148 (2009).
http://dx.doi.org/10.1021/nl802700u
3.
3. A. I. Hochbaum and P. D. Yang, Chem. Rev. 110, 527 (2010).
http://dx.doi.org/10.1021/cr900075v
4.
4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 20, 12 (2012).
http://dx.doi.org/10.1002/pip.2163
5.
5. N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, Nanotechnology 22, 225402 (2011).
http://dx.doi.org/10.1088/0957-4484/22/22/225402
6.
6. D. J. Wolford, G. D. Gilliland, T. F. Kuech, J. F. Klem, H. P. Hjalmarson, J. A. Bradley, C. F. Tsang, and J. Martinsen, Appl. Phys. Lett. 64, 1416 (1994).
http://dx.doi.org/10.1063/1.111901
7.
7. R. J. Nelson and R. G. Sobers, J. Appl. Phys. 49, 6103 (1978).
http://dx.doi.org/10.1063/1.324530
8.
8. D. J. Wolford, G. D. Gilliland, T. F. Kuech, L. M. Smith, J. Martinsen, J. A. Bradley, C. F. Tsang, R. Venkatasubramanian, S. K. Ghandi, and H. P. Hjalmarson, J. Vac. Sci. Technol. B 9, 2369 (1991).
http://dx.doi.org/10.1116/1.585705
9.
9. S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, Nano Lett. 11, 1276 (2011).
http://dx.doi.org/10.1021/nl104316t
10.
10. L. Prechtel, M. Padilla, N. Erhard, H. Karl, G. Abstreiter, A. F. I. Morral, and A. W. Holleitner, Nano Lett. 12, 2337 (2012).
http://dx.doi.org/10.1021/nl300262j
11.
11. P. Parkinson, H. J. Joyce, Q. Gao, H. H. Tan, X. Zhang, J. Zou, C. Jagadish, L. M. Herz, and M. B. Johnston, Nano Lett. 9, 3349 (2009).
http://dx.doi.org/10.1021/nl9016336
12.
12. F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, Appl. Phys. Lett. 54, 890 (1989).
http://dx.doi.org/10.1063/1.100800
13.
13. R. K. Ahrenkiel, Solid-State Electron. 35, 239 (1992).
http://dx.doi.org/10.1016/0038-1101(92)90228-5
14.
14. L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Y. Kim, H. J. Joyce, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 89, 173126 (2006).
http://dx.doi.org/10.1063/1.2364885
15.
15. S. Perera, M. A. Fickenscher, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, Appl. Phys. Lett. 93, 53110 (2008).
http://dx.doi.org/10.1063/1.2967877
16.
16. H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. N. Guo, and J. Zou, Nano Lett. 7, 921 (2007).
http://dx.doi.org/10.1021/nl062755v
17.
17. L. V. Titova, T. B. Hoang, J. M. Yarrison-Rice, H. E. Jackson, Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, J. Zou, and L. M. Smith, Nano Lett. 7, 3383 (2007).
http://dx.doi.org/10.1021/nl071733l
18.
18. L. Pavesi and M. Guzzi, J. Appl. Phys. 75(10 ), 4779 (1994).
http://dx.doi.org/10.1063/1.355769
19.
19. M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Phys. Rev. B 44, 3115 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3115
20.
20. W. G. Pan, H. Yaguchi, K. Onabe, R. Ito, and Y. Shiraki, Appl. Phys. Lett. 67, 959 (1995).
http://dx.doi.org/10.1063/1.114708
21.
21. M. E. Hoenk, C. W. Nieh, H. Z. Chen, and K. J. Vahala, Appl. Phys. Lett. 55, 53 (1989).
http://dx.doi.org/10.1063/1.102263
22.
22. G. Biasiol, F. Reinhardt, A. Gustafsson, E. Martinet, and E. Kapon, Appl. Phys. Lett. 69, 2710 (1996).
http://dx.doi.org/10.1063/1.117686
23.
23. R. K. Ahrenkiel, M. M. Aljassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, J. Electrochem. Soc. 137, 996 (1990).
http://dx.doi.org/10.1149/1.2086595
24.
24. R. K. Ahrenkiel, in Semiconductors and Semimetals, edited by K. A. Richard and S. L. Mark (Elsevier, 1993), Vol. 39, p. 39.
25.
25. M. Bar-Sadan, J. Barthel, H. Shtrikman, and L. Houben, Nano Lett. 12, 2352 (2012).
http://dx.doi.org/10.1021/nl300314k
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4735002
Loading
/content/aip/journal/apl/101/2/10.1063/1.4735002
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/2/10.1063/1.4735002
2012-07-11
2015-08-04

Abstract

GaAs/AlxGa1−xAs core-shell nanowires were grown by metal organic chemical vapor deposition with optimized AlxGa1−xAs shell and twin-free Au-catalyzed GaAs cores. Time-resolved photoluminescence measurements were carried out on single nanowires at room temperature, revealing minority carrier lifetimes of 1.02 ± 0.43 ns, comparable to self-assisted nanowiresgrown by molecular beam epitaxy. The long minority carrier lifetimes are mainly attributed to improvement of the GaAs/AlxGa1−xAs interface quality. The upper limit of surface recombination velocity of the structure is calculated to be 1300 cm/s with the AlxGa1−xAs shell grown at 750 °C, which is comparable with planar double heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/2/1.4735002.html;jsessionid=2kwewpqox7ul2.x-aip-live-06?itemId=/content/aip/journal/apl/101/2/10.1063/1.4735002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4735002
10.1063/1.4735002
SEARCH_EXPAND_ITEM