1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/2/10.1063/1.4737006
1.
1. T. Tsutsui and S. Saito, Organic Multilayer-Dye Electroluminescent Diodes—Is There Any Difference with Polymer LED? (Kluwer Academic, Dordrecht, 1993).
2.
2. L. J. Rothberg and A. J. Lovinger, J. Mater. Res. 11, 31743187 (1996).
http://dx.doi.org/10.1557/JMR.1996.0403
3.
3. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151154 (1998).
http://dx.doi.org/10.1038/25954
4.
4. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 50485051 (2001).
http://dx.doi.org/10.1063/1.1409582
5.
5. J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, S. B. Harkins, A. J. M. Miller. S. F. Mickenberg, and J. C. Peters, J. Am. Chem. Soc. 132, 94999508 (2010).
http://dx.doi.org/10.1021/ja1004575
6.
6. O. Bolton, L. Kangwon, H.-J. Kim, K. Y. Lin, and J. Kim, Nature Chem. 3, 205210 (2011).
http://dx.doi.org/10.1038/nchem.984
7.
7. D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, J. Appl. Phys. 106, 124510 (2009).
http://dx.doi.org/10.1063/1.3273407
8.
8. A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater. 21, 48024806 (2009).
http://dx.doi.org/10.1002/adma.200900983
9.
9. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, Appl. Phys. Lett. 98, 083302 (2011).
http://dx.doi.org/10.1063/1.3558906
10.
10. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, Nat. Photon. 6, 253258 (2012).
http://dx.doi.org/10.1038/nphoton.2012.31
11.
11. S. H. Jeong and J. Y. Lee, J. Mater. Chem. 21, 1460414609 (2011).
http://dx.doi.org/10.1039/c1jm12421h
12.
12. S.-J. Su, H. Sasabe, Y.-J. Pu, K. Nakayama, and J. Kido, Adv. Mater. 22, 33113316 (2010).
http://dx.doi.org/10.1002/adma.200904249
13.
13. V. Bulović, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Tompson, and S. R. Forrest, Chem. Phys. Lett. 287, 455460 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00168-7
14.
14. L. H. Smith, J. A. E. Wasey, and W. L. Barnes, Appl. Phys. Lett. 84, 29862988 (2004).
http://dx.doi.org/10.1063/1.1712036
15.
15. A. C. Morteani, A. S. Dhoot, J.-S. Kim, C. Silva, N. C. Greenham, C. Murphy, E. Moons, S. Ciná, J. H. Burroughes, and R. H. Friend, Adv. Mater. 15, 17081712 (2003).
http://dx.doi.org/10.1002/adma.200305618
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4737006
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Molecular structures of -MTDATA and PPT with HOMO and LUMO levels. (b) Fluorescence spectra of -MTDATA (red line), PPT (black line), and 50 mol. % -MTDATA:PPT (orange line) films at 300 K, and phosphorescence spectra of -MTDATA (blue line) and PPT (green line) films at 10 K. The excitation wavelength of the films was 337 nm. Fluo = fluorescence, Phos = phosphorescence.

Image of FIG. 2.

Click to view

FIG. 2.

Streak image (green dots) and PL spectra of a 50 mol. % -MTDATA:PPT film at 10 K. The PL spectrum of the delayed component (black line) is compared to the phosphorescent spectrum of -MTDATA (red line). Inset: Energy diagram for the exciplex formed between -MTDATA and PPT molecules.

Image of FIG. 3.

Click to view

FIG. 3.

External EL quantum efficiency ( ) as a function of current densityfor devices with the structure ITO/-MTDATA (35 nm)/X mol. % -MTDATA: PPT (30 nm)/PPT (35 nm)/LiF (0.8 nm)/Al, where X = 30 mol. % (circles), 50 mol. % (triangles), and 70 mol. % (inverted triangles). Inset: Concentration dependence of PL quantum efficiency for -MTDATA: PPT films.

Image of FIG. 4.

Click to view

FIG. 4.

Power conversion efficiency as a function of luminance for a device with the structure ITO/-MTADATA (35 nm)/50 mol. % -MTADATA:PPT (30 nm)/PPT (35 nm)/LiF/Al.

Loading

Article metrics loading...

/content/aip/journal/apl/101/2/10.1063/1.4737006
2012-07-12
2014-04-21

Abstract

Enhanced electroluminescence efficiency is achieved in organic light-emitting diodes through delayed fluorescence of the exciplex state formed between 4,4′,4′′-tris[3-methylphenyl(phenyl)amino]-triphenylamine (-MTDATA) as an electron-donating material and 2,8-bis(diphenylphosphoryl)dibenzo-[,]thiophene (PPT) as an electron-accepting material. The devices exhibited maximum external electroluminescence quantum and power efficiencies of 10.0% and 47.0 lm/W, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/2/1.4737006.html;jsessionid=2t87cpv3rhl4l.x-aip-live-02?itemId=/content/aip/journal/apl/101/2/10.1063/1.4737006&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4737006
10.1063/1.4737006
SEARCH_EXPAND_ITEM